

Features:

- V_{DS}, 30 V
- Maximum R_{DS(ON)}, 1.3 mΩ
- I_D, 60 A
- Pb-Free (RoHS Compliant), Halogen Free

Applications:

- High Frequency DC-DC Conversion
- Motor Drive
- Industrial Automation
- Synchronous Rectification
- Inrush Protection
- Point-of-Load (POL) Converters

EPC2023 eGaN® FETs are supplied only in passivated die form with solder bars

Die Size: 6.05 mm x 2.3 mm

MAXIMUM RATINGS

Parameter	Value
V _{DS} (Maximum Drain – Source Voltage)	30 V
V _{GS} (Gate – Source Maximum Voltage Range)	-4 V < V _{GS} < 6 V
I_D Continuous Drain Current, 25 °C, θ_{JA} = 13.5)	60 A
I _D (Maximum Pulsed Drain Current, 25 °C, T _{pulse} = 300 μs)	590 A
T _J (Optimum Temperature Range)	-40 °C < T _J < 150 °C

STATIC CHARACTERISTICS

Parameter	Conditions	Value
I _{DSS} (Maximum Drain – Source Leakage)	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$	1.0 mA
R _{DS(ON)} (Maximum R _{DS(ON)})	$V_{GS} = 5 \text{ V}, I_D = 40 \text{ A}$	1.3 mΩ
R _{DS(ON)} (Typical R _{DS(ON)})	$V_{GS} = 5 \text{ V}, I_D = 40 \text{ A}$	1 mΩ
V _{GS(TH)} (Gate – Source Threshold Voltage)	$V_{DS} = V_{GS}$, $I_D = 20 \text{ mA}$	$0.7 \text{ V} < V_{GS(TH)} < 2.5 \text{ V}$
I _{GSS} (Gate – Source Maximum Positive Leakage)	V _{GS} = 5 V	9 mA
I _{GSS} (Gate – Source Maximum Negative Leakage)	V _{GS} = -4 V	-1 mA

www.epc-co.com

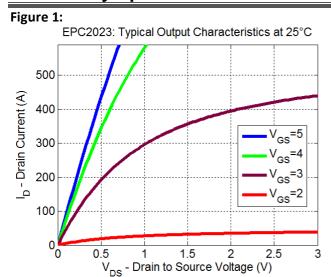
Specifications are with Substrate shorted to Source where applicable

T_J = 25 °C unless otherwise stated

DYNAMIC CHARACTERISTICS

Parameter	Conditions	Typical Value
C _{ISS} (Input Capacitance)	V _{DS} = 15 V, V _{GS} = 0 V	2.3 nF
C _{OSS} (Output Capacitance)		1.3 nF
C _{RSS} (Reverse Transfer Capacitance)		56 pF
R _G (Gate Resistance)		0.3 Ω
Q _G (Total Gate Charge)	V _{DS} = 15 V, I _D = 40 A	20 nC
Q _{GS} (Gate to Source Charge)		5.8 nC
Q _{GD} (Gate to Drain Charge)		1.9 nC
Q _{G(TH)} (Gate Charge at Threshold)		3.6 nC
Q _{OSS} (Output Charge)	V _{DS} = 15 V, V _{GS} = 0 V	28 nC
Q _{RR} (Source-Drain Recovery Charge)		0

 $T_J = 25$ °C unless otherwise stated


THERMAL CHARACTERISTICS

		TYP	
$R_{\theta JC}$	Thermal Resistance, Junction to Case	0.5	°C/W
$R_{\theta JB}$	Thermal Resistance, Junction to Board	1.4	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1)	42	°C/W

Note 1: R_{BJA} is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board.

Specifications are with Substrate shorted to Source where applicable

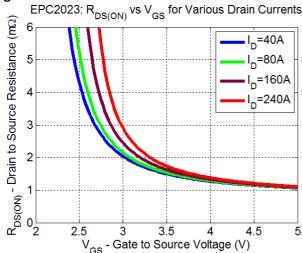


Figure 5a:

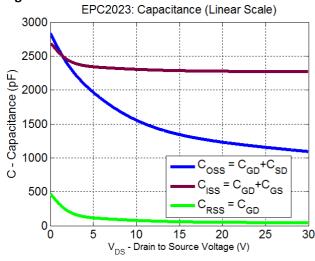


Figure 2:

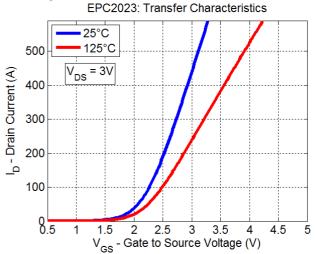


Figure 4:

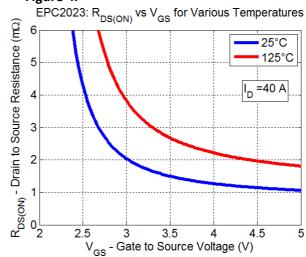


Figure 5b:

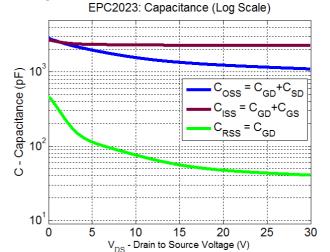


Figure 6:

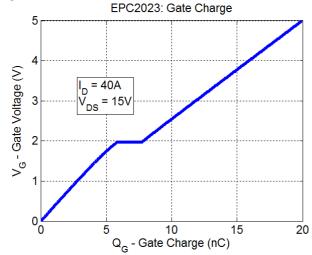


Figure 8:

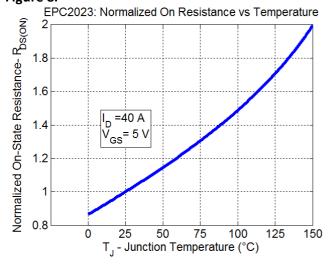
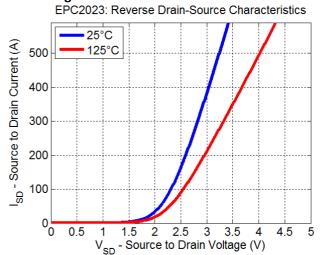
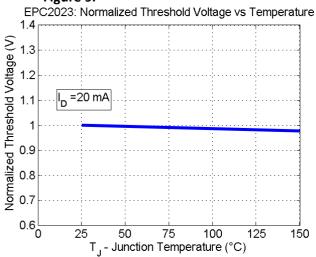
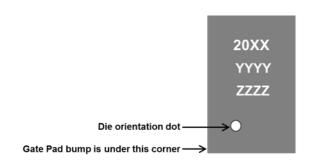
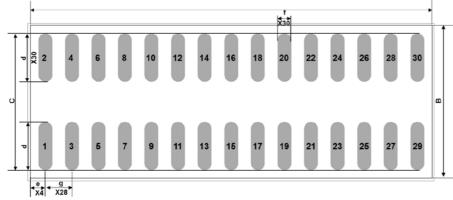


Figure 7:

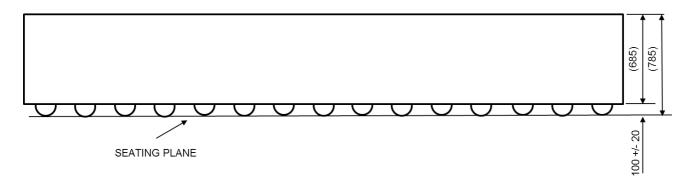



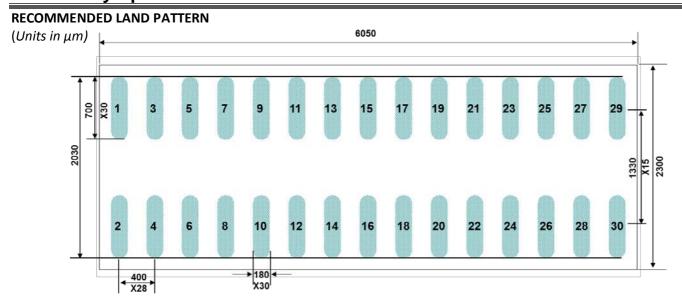

Figure 9:

All measurements were done with substrate shorted to source


DIE MARKINGS

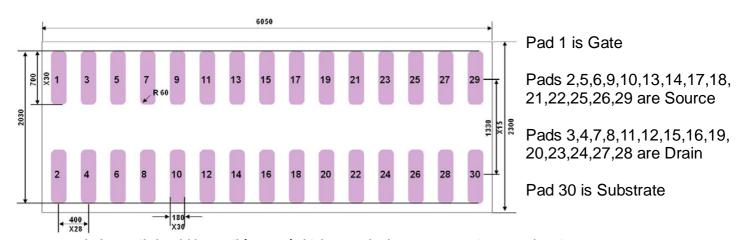
	Laser Marking		
Part Number	Part # Marking	Lot_Date Code	Lot_Date Code
	Line 1	Marking Line 2	Marking Line 3
EPC2023ENGR	20XX	YYYY	ZZZZ


DIE OUTLINE


DIM	MICROMETERS		
	MIN	Nominal	MAX
А	6020	6050	6080
В	2270	2300	2330
С	2047	2050	2053
d	717	720	723
е	210	225	240
f	195	200	205
g	400	400	400

Side View

www.epc-co.com



Pad 1 is Gate
Pads 2,5,6,9,10,13,14,17,18,21,22,25,26,29 are Source
Pads 3,4,7,8,11,12,15,16,19,20,23,24,27,28 are Drain
Pad 30 is Substrate

Land pattern is solder mask defined Solder mask opening is 10 µm smaller per side than bump

RECOMMENDED STENCIL

(Units in µm)

Recommended stencil should be 4mil (100 μm) thick, must be laser cut, openings per drawing.

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein. Preliminary specification sheet contains information regarding a product EPC is considering for production release. EPC does not assume any liability arising out of the application or use of any product or circuit described herin; neither does it convey any license under its patent rights, nor the rights of other.

 $eGaN^*$ is a registered trademark of Efficient Power Conversion Corporation. U.S. Patents 8,350,294; 8,404,508; 8,431,960; 8,436,398

Revised June, 2014