

12-bit 5.4Gsps Analog to Digital

DATASHEET - PREI IMINARY

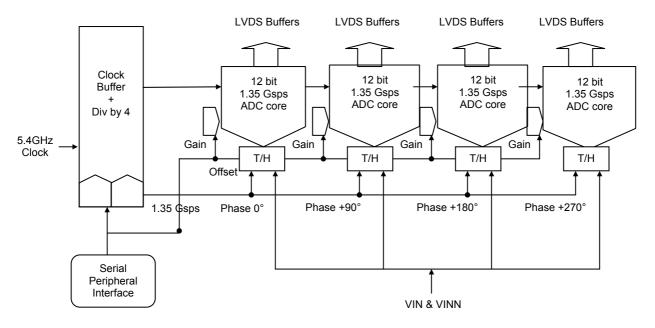
Main Features

- Single Channel ADC with 12-bit resolution using four interleaved cores enabling 5.4 Gsps conversion rate.
- Single 5.4 GHz Differential Symmetrical Input Clock
- 1000 mVpp Analog Input (Differential AC or DC Coupled)
- ADC Master Reset (LVDS)
- 2 conversion modes
 - 4 interleaved cores with staggered output data (equivalent to Mux 1:4)
 - Simultaneous sampling over 4 cores converting the same input signal with aligned outputs (can be used for real time averaging)
- LVDS Output format
- Digital Interface (SPI) with reset signal:
 - Standby Mode (full or partial)
 - Selection of data output swing
 - **Test Modes**
 - Chip configurations
- Power Supplies: single 4.8V, 3.3V and 1.8V
- Reduced clock induced transients on power supply pins due to BiCMOS Silicon technology
- Power Dissipation: 7 W
- EBGA380 Package 31x31mm (1.27 mm Pitch)

Performance

- Analog input bandwidth (-3 dB): 2.4GHz (1)
- Fsampling = 4.5 Gsps, (-3 dBFS) single tone
 - 4.5 Gsps, Fin = 1200 MHz, ENOB = 9.2 bit FS over first Nyquist zone (2)
 - 4.5 Gsps, Fin = 1200 MHz, SNR = 57.8 dBFS over first Nyquist zone (2)
 - 4.5 Gsps, Fin = 1200 MHz, SFDR = 69 dBFS over first Nyquist zone (2)
 - 4.5 Gsps, Fin = 2240 MHz, ENOB = 8.6 bit FS over first Nyquist zone (2)
 - 4.5 Gsps, Fin = 2240 MHz, SNR = 54.6 dBFS over first Nyquist zone $^{(2)}$
- 4.5 Gsps, Fin = 2240 MHz, SFDR = 63 dBFS over first Nyquist zone (2)
- Fsampling = 5.4 Gsps, (-3 dBFS) single tone
 - 5.4 Gsps, Fin = 1200 MHz, ENOB = 8.9 bit_FS over first Nyquist zone (2)
 - 5.4 Gsps, Fin = 1200 MHz, SNR = 57.6 dBFS over first Nyquist zone (2)
 - 5.4 Gsps, Fin = 1200 MHz, SFDR = 63 dBFS over first Nyquist zone (2)
- Latency: 26 clock cycles

Applications

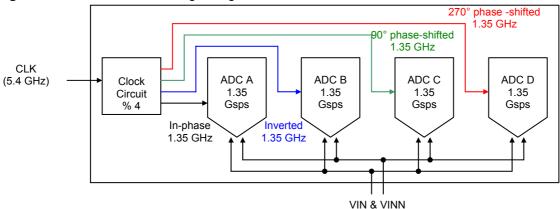

- High Speed Data Acquisition
- Direct RF Down conversion
- Ultra Wideband Satellite Digital Receiver
- 16 Gbps pt-pt microwave receivers
- High energy Physics
- Automatic Test Equipment
- High Speed Test Instrumentation
- LiDAR (Light Detection And Ranging)
- Software Design Radio

1

- Note 1: Input bandwidth of final silicon will be extended beyond 3 GHz
- Note 2: Dynamic performances of final product will be improved due to extended bandwidth.

1 Block Diagram

Figure 1. Simplified Block Diagram


2 Description

The ADC is made up of four identical 12-bit ADC cores where all four ADCs are all interleaved together. All four ADCs are clocked by the same external input clock signal delayed with the appropriate phase. The Clock Circuit is common to all four ADCs. This block receives an external 5.4 GHz clock (maximum frequency) and preferably a low jitter sinewave signal. In this block, the external clock signal is then divided by FOUR in order to generate the internal sampling clocks:

The in-phase 1.35 GHz clock is sent to ADC A while the inverted 1.35 GHz clock is sent to ADC B, the in-phase 1.35 GHz clock is delayed by 90° to generate the clock for ADC C and the inverted 1.35 GHz clock is delayed by 90° to generate the clock for ADC D, resulting in an interleaved mode with an equivalent sampling frequency of 5.4 Gsps.

Note: This document should be used in conjunction with the other documentation relating to this product, e.g. Application notes, ... etc. Several adjustments for the sampling delay and the phase are tuned during initial manufacturing test in this clock circuit to ensure a proper phase relation between the different clocks generated internally from the 5.4 GHz clock.

Figure 2. Internal interleaving configuration

Notes: 1. For simplification purpose of the timer circuit, the temporary order of ports for sampling is A C B D, therefore sampling order at output port is as follows:

The **T/H** (Track and Hold) is located after the internal 100 ohms impedance and before the ADC cores. This block is used to track the data when the internal sampling clock is low and to hold the data when the internal sampling clock is high.

The **ADC cores** are identical for the four ADCs and each can be powered ON or DOWN individually. Each one includes a quantifier block as well as a fast logic block composed of regenerating latches and the Binary decoding block.

The EV12AS350 ADC is pre-calibrated at the factory. It can be used in **staggered mode** (2 or 4 ADC cores interleaved) or in **simultaneous sampling mode** (analog input converted simultaneously by the 1 to 4 ADC cores). In order to use the ADC at its best performance in interleaved mode, the ADC cores need to be calibrated between each-others in terms of offset, gain and phase. Several calibration settings are programmed during manufacturing. Some of these settings can be modified by the user via Serial Peripheral Interface (SPI) for best performance according to the application-specific conditions.

The **junction temperature** can be monitored using a diode-mounted transistor but not connected to the die. Two sets of calibration are pre-programmed (one for cold temperature conditions and another one for ambient and hot temperature conditions) and can be selected via the SPI according to the temperature conditions of the application. However the user can fine tune the ADC calibration settings by changing the calibration values through the SPI.

The **SPI block** provides the digital interface for the digital controls of the ADCs. All the functions of the ADC are accessible and controlled via this SPI (standby mode, test modes, adjustment of different parameters...).

Possible adjustments of parameters via the SPI are:

- Selection of swing on output data (LVDS standard or reduced swing to save around 180mW)
- Analog input resistance
- Common mode on analog input
- Duration of reset (time during which data ready are set to zero)
- Flash sequence length (Test modes)
- Interlacing gain (to equalize gain of each ADC channel)
- Interlacing offset (to equalize offset of each ADC channel)
- Interlacing phase (to equalize phase of each ADC channel)

Two **Test modes** are available via the SPI and can be generated by the ADC: Flash and Ramp. The test modes are used for debug and testability. Flash mode is useful to align the interface between the ADC and the FPGA. In Ramp mode, the data output is a 12 bit ramp on the four ADC cores.

In addition a PRBS mode is available and can be used as a test mode or data scrambling.

Frequency of input clock can be divided by two internally. This mode is accessible via the SPI. It can be useful for debug.

It is possible to verify the integrity of OTP (One Time Programmable or fuses) in verifying the **CRC** (Cyclic Redundancy Check) status.

A **SYNC** synchronization signal (LVDS compatible) is mandatory to initialize and synchronize the four ADC cores.

Each ADC core has a Parity Bit and an In Range / Out of Range Bit

3 Specifications

3.1. Absolute Maximum Ratings

Table 1. Absolute Maximum ratings

Dozomotov	Symbol	Valu	е	l lmit	
Parameter	Symbol	Min	Max	Unit	
Positive supply voltage 4.8V	V_{CCA}	GND - 0.3	5.3	V	
Positive Digital supply voltage 3.3V	V_{CCD}	GND - 0.3	3.6	٧	
Positive output supply voltage 1.8V	V _{cco}	GND - 0.3	2.1	٧	
Analog input peak voltage	V _{IN} or V _{INN}	GND - 0.3	V _{CCA} + 0.3	V	
Maximum difference between V_{IN} and V_{INN}	V _{IN -} V _{INN}	2.5		V	
Clock input voltage	V _{CLK} or V _{CLKN}	GND - 0.3	V _{CCD} + 0.3	V	
Maximum difference between V_{CLK} and V_{CLKN}	V _{CLK -} V _{CLKN}	4		V	
SYNC input peak voltage	V _{SYNC} or V _{SYNCN}	GND - 0.3	V _{CCD} + 0.3	V	
Maximum difference between V _{SYNC} and V _{SYNCN}	V _{SYNC -} V _{SYNCN}	2		V	
SPI input voltage	CSN, SCLK, RSTN, MOSI	-0.3	V _{CCD} + 0.3	V	
Junction Temperature	T_J		150	°C	

Parameter	Symbol	Value	Unit
Electrostatic discharge human body model	ESD HBM	1500 (TBC)	
Latch up		JESD 78D Class I & Class II (TBC)	V
Moisture sensitivity level	MSL	3	
Storage temperature range	Tstg	-55 to +150	°C

Notes: Absolute maximum ratings are limiting values (referenced to GND = 0V), to be applied individually, while other parameters are within specified operating conditions. Long exposure to maximum rating may affect device reliability.

All integrated circuits have to be handled with appropriate care to avoid damages due to ESD. Damage caused by inappropriate handling or storage could range from performance degradation to complete failure.

No power sequence recommendation. The power supplies can be switched on and off in any order. The power-up of the 3 power supplies has to be completed within a limited time. Long exposure to partial powered ON supplies may damage the device.

3.2. Recommended Conditions Of Use

Table 2. Recommended Conditions of Use

Parameter	Symbol	Comments	Recommended Value	Unit
Positive supply voltage	V_{CCA}	Analog Part	4.8	V
Positive digital supply voltage	V _{CCD}	Analog and Digital parts	3.3	V
Positive Output supply voltage	V _{cco}	Output buffers and Digital Part	1.8	V
Differential analog input voltage (Full Scale)	V _{IN} , V _{INN} V _{IN} -V _{INN}		±500 1000	mV mVpp
Clock input power level	P _{CLK} P _{CLKN}		+7	dBm
Digital CMOS input	V _D	V _{IL} V _{IH}	0 Vcco	V
Clock frequency	Fc		0.5 ≤ Fc ≤ 5.4	GHz
Operating Temperature Range	T _C ; T _J		-40°C < T _C ; T _J < 110°C	°C

3.3. Electrical Characteristics for supplies, Inputs and Outputs

Unless otherwise specified:

Typical values are given for typical supplies V_{CCA} = 4.8V, V_{CCD} = 3.3V, V_{CCO} = 1.8V at ambient. Minimum and Maximum values are given over temperature and power supplies range. Values are given for default modes with Fclk = 5.4 GHz.

 Table 3.
 Electrical characteristics for Supplies, Inputs and Outputs

Parameter	Test Level	Symbol	Min	Тур	Max	Unit	Note
RESOLUTION				12		bit	
POWER REQUIREMENTS	•					•	•
Power Supply voltage							
- Analog		V_{CCA}	4.7	4.8	4.9	V	
- Digital		V _{CCD}	3.2	3.3	3.4	V	
- Output (V _{CCO1} and V _{CCO2})		V _{CCO}	1.7	1.8	1.9	V	(7)
Power supply currents with reduced swing on o	output bu	iters (Reduc	ea Swing E	surrer = detaur	t mode)	1	.,
Power Supply current with 4 ADC cores ON - Analog		1		275	TBD	mA	
- Digital @4.5Gsps / @5.4Gsps		I _{CCA_RSB} I _{CCD_RSB}		1455 / 1460	TBD	mA	(1)
- Output @4.5Gsps / @5.4Gsps		I _{CCO_RSB}		465 / 485	TBD	mA	
Power Supply current with only 1 ADC Core ON		000_100					
- Analog		I _{CCA_RSB}		100	TBD	mA	(1)
- Digital @4.5Gsps / @5.4Gsps		I _{CCD_RSB}		550 / 555	TBD	mA	, ,
- Output @4.5Gsps / @5.4Gsps		I _{CCO RSB}		120 / 125	TBD	mA	
Power Supply current : standby		I					
- Analog		I _{CCA_RSB}		45	TBD	mA	(1)
- Digital		I _{CCD_RSB}		260	TBD	mA	
- Output	1	I _{CCO_RSB}		7.0 / 7.1	TBD	mA W	1
Power dissipation 4 cores ON @4.5 / @5.4Gsps		Б		7.0 / 7.1 2.5 / 2.5	TBD		(1)
Power dissipation 1 core ON @4.5 / @5.4Gsps Full Standby mode		P_{D_RSB}		2.5 / 2.5	TBD TBD	W W	
Power supply currents with LVDS swing on out	nut huffe	re		1.1	TBD	VV	(7)
Power Supply current with 4 ADC cores ON	put buile						
- Analog		I _{CCA_LVDS}		275	TBD	mA	(1)
- Digital @4.5Gsps / @5.4Gsps		I _{CCD LVDS}		1455 / 1460	TBD	mA	(1)
- Output @4.5Gsps / @5.4Gsps		I _{CCO_LVDS}		560 / 585	TBD	mA	
Power Supply current with only 1 ADC core ON							
- Analog		I _{CCA_LVDS}		100	TBD	mA	(1)
- Digital @4.5Gsps / @5.4Gsps		I _{CCD_LVDS}		550	TBD	mA	
- Output @4.5Gsps / @5.4Gsps		I _{CCO_LVDS}		145	TBD	mA	
Power dissipation 4 cores ON @4.5 / @5.4Gsps		P_{D_LVDS}		7.1 / 7.2	TBD	W	(1)
Power dissipation 1 core ON @4.5 / @5.4Gsps			450	2.6 / 2.6	TBD	W	(2)
Maximum number of power-up		NbPWRup	1E6				(-/
ANALOG INPUTS	1	_				1	1
Common mode compatibility for analog inputs				AC or DC			
Input Common Mode		CM_{IN} or	TBD	3.25	TBD	V	(3)
		CMIRef	100	0.20	100	•	
Full Scale Input Voltage range on each single		V_{IN}		500		mVpp	
ended input		V_{INN}		500		mVpp	
Analog Input power Level							
(in 100Ω differential termination)		P _{IN, INN}		+1		dBm	
Input leakage current		I _{IN}		40		μA	
Input Resistance (differential)		R _{IN}	98	100	102	Ω	(4) (5)
CLOCK INPUTS	1	IN				52	
			Law Dhana	naine Different	ial Cinavia		
Source Type			Low Phase	noise Different	lai Sinewave	1	
ADC intrinsic clock jitter				150		fs rms	
Clock input common mode voltage		CM _{CLK}	TBD	1.7	TBD	V	1
Clock input power level in 100Ω		P _{CLK} , CLKN	-3	1	+7	dBm	
Clock input voltage on each single ended input	1	V _{CLK} or	±158	±250	±500	mV	1
(for sinewave clock with F > 4 GHz)		V_{CLKN}	±130	±25U	±500	IIIV	
Clock input voltage into 100Ω differential clock		V _{CLK} -	0.632	1	2	Vpp	
input (for sinewave clock with F > 4 GHz)	Ī	V _{CLKN}					1
Clock input minimum slew rate (square or sinewave clock)		SR _{CLK}	8	12		GV/s	

Parameter	Test Level	Symbol	Min	Тур	Max	Unit	Note
Clock input resistance (differential)		R _{CLK}	TBD	100	TBD	Ω	(4)
Clock Jitter (max. allowed on external clock source) For 5.4 GHz sinewave analog input		Jitter			70	fs rms	
Clock Duty Cycle		Duty Cycle	45	50	55	%	
SYNC, SYNCN Signal							
Input Voltages to be applied							
■ Swing		V_{IH} - V_{IL}	100	350	450	mV	
■ Common Mode		CM _{SYNC}	1.125	1.25	1.8	V	
SYNC, SYNCN input capacitance		C _{SYNC}		1		pF	
SYNC, SYNCN input resistance		R _{SYNC}		100		Ω	
SPI (CSN, SCLK, RSTN, MOSI)							
CMOS low level of Schmitt trigger		Vtminusc			0.35* V _{CCD}	V	
CMOS high level of Schmitt trigger		Vtplusc	0.65*V _{CCD}			V	
CMOS Schmitt trigger hysteresis		Vhystc	0.10*V _{CCD}			V	
CMOS low level input current (Vinc=0 V)		lilc			300	nA	
CMOS high level input current (Vinc=V _{CCD} max)		lihc			1000	nA	
SPI (MISO)							
CMOS low level output voltage (lolc = 3 mA)		Volc			0.20*V _{CCD}	V	
CMOS high level output voltage (lohc = 3 mA)		Vohc	0.8*V _{CCD}			V	
DIGITAL DATA and DATA READY OUTPUTS							
Logic Compatibility				LVDS	ı		
Output levels with normal swing mode $50\Omega \text{ transmission lines, } 100\Omega \text{ (2 x } 50\Omega)$ differential termination • Logic low • Logic high • Differential output • Common mode		V _{OL} V _{OH} V _{OH} - V _{OL} V _{OCM}	TBD TBD 1.03	1.07 1.33 260 1.20	TBD TBD 1.375	V V mV V	(6) (7)
Output levels with reduced swing mode = default mode $50\Omega \text{ transmission lines, } 100\Omega \text{ (2 x } 50\Omega \text{)}$ differential termination		V _{OL} V _{OH} V _{OH} - V _{OL} V _{OCM}	TBD TBD 1.03	1.08 1.29 210 1.20	TBD TBD 1.375	V V mV V	(6)

Notes:

- Maximum currents are obtained with maximum supplies and maximum temperature Maximum number of power-up is limited by the maximum number of OTP reading.
- The DC analog common mode voltage is provided by ADC. CMIRef can be adjusted thanks to SPI.
- CMIRef= $0.709*V_{CCA}+(16-SPIcode)*13mV$ with SPIcode ranging between 0 and 31. See chap. 5.15 For optimal performance in term of VSWR, Board input impedance must be $50\Omega \pm 5\%$ and analog input impedance must be digitally trimmed to cope with process deviation.
- The Analog input impedance is trimmed during manfucaturing. User can modify R_{IN} via the SPI. See chap 5.14. Maximum single ended load capacitance has to be less than 5 pF
- Swing can be adjusted via SPI. See chap 5.13.

3.4. Converter Characteristics

Unless otherwise specified:

Typical values are given for typical supplies V_{CCA} = 4.8V, V_{CCD} = 3.3V, V_{CCO} = 1.8V at ambient.

Minimum and Maximum values are given over temperature and power supplies range.

-1 dBFS Analog input.

Clock input differentially driven; analog input differentially driven.

Values are given for default modes with Fclk = 5.4 GHz.

Table 4. INL & Gain Characteristics

Parameter	Test Level	Symbol	Min	Тур	Max	Unit	Note
DC ACCURACY							
Gain central value		Go		0	+/- 1.5	dB	(1)
Gain variation versus temperature		G(T)			+/- 0.5	dB	
Input offset voltage		OFFSET		0		LSB	(2)
INL & DNL							
DNLrms		DNLrms		0.35	TBD	LSB	
Differential non linearity		DNL+		TBD	TBD	LSB	
Differential non linearity		DNL-	-0.5			LSB	(3)
INLrms		INLrms		0.65	TBD	LSB	(-)
Integral non linearity		INL+		+2.5	TBD	LSB	
Integral non linearity		INL-	TBD	-2.5		LSB	

Notes:

- 1. Gain central value is measured at Fin = 100 MHz. This value corresponds to the maximum deviation from part to part of different wafer batches.
- 2. Measured at 5.4 Gsps Fin = 1600MHz (TBC) -1dBFS
- 3. Measured at 5.4 Gsps Fin = 100MHz (TBC) -1dBFS

Table 5.Dynamic Characteristics

Parameter	Test Level	Symbol	Min	Тур	Max	Unit	Note				
AC ANALOG INPUTS	AC ANALOG INPUTS										
Full Power Input Bandwidth		FPBW		2.4		GHz	(1)				
Gain Flatness (+/- 0.5 dB)		GF		500		MHz					
Input Voltage Standing Wave Ratio up to 2.4 GHz		VSWR		1.25:1							
DYNAMIC PERFORMANCE over first Nyquist zone (single tone at -1 dBFS) 4 cores interleaved (Staggered mode)											
Effective Number Of Bits 4.5 Gsps Fin = 1200 MHz 4.5 Gsps Fin = 2100 MHz 4.5 Gsps Fin = 2240 MHz 5.4 Gsps Fin = 1200 MHz 5.4 Gsps Fin = 2100 MHz 5.4 Gsps Fin = 2240 MHz		ENOB		8.9 8.2 7.9 8.8 8.1 7.8		Bit_FS	(2)				
Spurious Free Dynamic Range (interleaving spurs included) 4.5 Gsps Fin = 1200 MHz 4.5 Gsps Fin = 2100 MHz 4.5 Gsps Fin = 2240 MHz 5.4 Gsps Fin = 1200 MHz 5.4 Gsps Fin = 2100 MHz 5.4 Gsps Fin = 2240 MHz		SFDR1		65 59 59 63 59		dBFS	(2)				

Parameter	Test Level	Symbol	Min	Тур	Max	Unit	Note
Spurious Free Dynamic Range (interleaving spurs excluded) 4.5 Gsps Fin = 1200 MHz 4.5 Gsps Fin = 2100 MHz 4.5 Gsps Fin = 2240 MHz 5.4 Gsps Fin = 1200 MHz 5.4 Gsps Fin = 2100 MHz 5.4 Gsps Fin = 2240 MHz		SFDR2		67 59 59 66 59		dBFS	(2) (3)
Signal to Noise Ratio 4.5 Gsps Fin = 1200 MHz 4.5 Gsps Fin = 2100 MHz 4.5 Gsps Fin = 2240 MHz 5.4 Gsps Fin = 1200 MHz 5.4 Gsps Fin = 2100 MHz 5.4 Gsps Fin = 2240 MHz		SNR		56.7 53.1 51.5 56.6 52.8 51.0		dBFS	(2) (3)
Signal to Noise and Distorsion 4.5 Gsps Fin = 1200 MHz 4.5 Gsps Fin = 2100 MHz 4.5 Gsps Fin = 2240 MHz 5.4 Gsps Fin = 1200 MHz 5.4 Gsps Fin = 2100 MHz 5.4 Gsps Fin = 2240 MHz		SINAD		55 51 50 55 51 49		dBFS	(2) (3)
Total Distorsion 4.5 Gsps Fin = 1200 MHz 4.5 Gsps Fin = 2100 MHz 4.5 Gsps Fin = 2240 MHz 5.4 Gsps Fin = 1200 MHz 5.4 Gsps Fin = 2100 MHz 5.4 Gsps Fin = 2240 MHz		TD		60 56 54 59 54 52		dBFS	(2) (3)
Total Harmonic Distorsion 4.5 Gsps Fin = 1200 MHz 4.5 Gsps Fin = 2100 MHz 4.5 Gsps Fin = 2240 MHz 5.4 Gsps Fin = 1200 MHz 5.4 Gsps Fin = 2100 MHz 5.4 Gsps Fin = 2240 MHz		THD		64 57 54 64 57 54		dBFS	(2) (3)
Total Interleaving Distorsion 4.5 Gsps Fin = 1200 MHz 4.5 Gsps Fin = 2100 MHz 4.5 Gsps Fin = 2240 MHz 5.4 Gsps Fin = 1200 MHz 5.4 Gsps Fin = 2100 MHz 5.4 Gsps Fin = 2240 MHz		TILD		62 63 64 60 58 58		dBFS	(2) (3)
DYNAMIC PERFORMANCE over first No. 4 cores interleaved (Staggered mode)	quist zor	ne (single ton	e at -3 dBFS)				
Effective Number Of Bits 4.5 Gsps Fin = 1200 MHz 4.5 Gsps Fin = 2100 MHz 4.5 Gsps Fin = 2240 MHz 5.4 Gsps Fin = 1200 MHz 5.4 Gsps Fin = 2100 MHz 5.4 Gsps Fin = 2240 MHz		ENOB		9.2 8.6 8.6 8.9 8.5 8.4		Bit_FS	(2) (3)
Spurious Free Dynamic Range (interleaving spurs included) 4.5 Gsps Fin = 1200 MHz 4.5 Gsps Fin = 2100 MHz 4.5 Gsps Fin = 2240 MHz 5.4 Gsps Fin = 1200 MHz 5.4 Gsps Fin = 2100 MHz 5.4 Gsps Fin = 2240 MHz		SFDR1		69 63 63 63 64 62		dBFS	(2) (3)
Spurious Free Dynamic Range (interleaving spurs excluded) 4.5 Gsps Fin = 1200 MHz 4.5 Gsps Fin = 2100 MHz 4.5 Gsps Fin = 2240 MHz 5.4 Gsps Fin = 1200 MHz 5.4 Gsps Fin = 2100 MHz 5.4 Gsps Fin = 2240 MHz		SFDR2		73 63 63 69 64 62		dBFS	(2) (3)

Parameter	Test Level	Symbol	Min	Тур	Max	Unit	Note
Signal to Noise Ratio 4.5 Gsps Fin = 1200 MHz 4.5 Gsps Fin = 2100 MHz 4.5 Gsps Fin = 2240 MHz 5.4 Gsps Fin = 1200 MHz 5.4 Gsps Fin = 2100 MHz 5.4 Gsps Fin = 2240 MHz		SNR		57.8 54.9 54.6 57.6 54.8 54.0		dBFS	(2) (3)
Signal to Noise and Distorsion 4.5 Gsps Fin = 1200 MHz 4.5 Gsps Fin = 2100 MHz 4.5 Gsps Fin = 2240 MHz 5.4 Gsps Fin = 1200 MHz 5.4 Gsps Fin = 2100 MHz 5.4 Gsps Fin = 2240 MHz		SINAD		57 54 54 56 53 52		dBFS	(2) (3)
Total Distortion 4.5 Gsps Fin = 1200 MHz 4.5 Gsps Fin = 2100 MHz 4.5 Gsps Fin = 2240 MHz 5.4 Gsps Fin = 1200 MHz 5.4 Gsps Fin = 2100 MHz 5.4 Gsps Fin = 2100 MHz 5.4 Gsps Fin = 2240 MHz		TD		64 60 60 60 58 58		dBFS	(2) (3)
Total Harmonic Distorsion 4.5 Gsps Fin = 1200 MHz 4.5 Gsps Fin = 2100 MHz 4.5 Gsps Fin = 2240 MHz 5.4 Gsps Fin = 1200 MHz 5.4 Gsps Fin = 2100 MHz 5.4 Gsps Fin = 2240 MHz		THD		70 61 61 67 61 61		dBFS	(2) (3)
Total Interleaving Distorsion 4.5 Gsps Fin = 1200 MHz 4.5 Gsps Fin = 2100 MHz 4.5 Gsps Fin = 2240 MHz 5.4 Gsps Fin = 1200 MHz 5.4 Gsps Fin = 2100 MHz 5.4 Gsps Fin = 2100 MHz 5.4 Gsps Fin = 2240 MHz		TILD		65 64 65 61 60 60		dBFS	(2) (3)
DYNAMIC PERFORMANCE over first N	yquist zor	ne (single ton	e at -6 dBFS)				
4 cores interleaved (Staggered mode) Effective Number Of Bits 4.5 Gsps Fin = 1200 MHz 4.5 Gsps Fin = 2100 MHz 4.5 Gsps Fin = 2240 MHz 5.4 Gsps Fin = 1200 MHz 5.4 Gsps Fin = 2100 MHz 5.4 Gsps Fin = 2100 MHz 5.4 Gsps Fin = 2240 MHz		ENOB		9.3 9.0 9.0 8.8 8.9 8.8		Bit_FS	(2) (3)
Spurious Free Dynamic Range (interleaving spurs included) 4.5 Gsps Fin = 1200 MHz 4.5 Gsps Fin = 2100 MHz 4.5 Gsps Fin = 2240 MHz 5.4 Gsps Fin = 1200 MHz 5.4 Gsps Fin = 2100 MHz 5.4 Gsps Fin = 2240 MHz		SFDR1		68 70 69 64 66		dBFS	(2) (3)
Spurious Free Dynamic Range (interleaving spurs excluded) 4.5 Gsps Fin = 1200 MHz 4.5 Gsps Fin = 2100 MHz 4.5 Gsps Fin = 2240 MHz 5.4 Gsps Fin = 1200 MHz 5.4 Gsps Fin = 2100 MHz 5.4 Gsps Fin = 2240 MHz		SFDR2		79 72 69 76 70 69		dBFS	(2) (3)
Signal to Noise Ratio 4.5 Gsps Fin = 1200 MHz 4.5 Gsps Fin = 2100 MHz 4.5 Gsps Fin = 2240 MHz 5.4 Gsps Fin = 1200 MHz 5.4 Gsps Fin = 2100 MHz 5.4 Gsps Fin = 2100 MHz 5.4 Gsps Fin = 2240 MHz		SNR		58.9 56.8 56.5 56.1 56.6 56.3		dBFS	(2) (3)
Signal to Noise and Distorsion 4.5 Gsps Fin = 1200 MHz 4.5 Gsps Fin = 2100 MHz 4.5 Gsps Fin = 2240 MHz 5.4 Gsps Fin = 1200 MHz 5.4 Gsps Fin = 2100 MHz 5.4 Gsps Fin = 2100 MHz 5.4 Gsps Fin = 2240 MHz		SINAD		58 56 56 55 55 55		dBFS	(2) (3)

Parameter	Test Level	Symbol	Min	Тур	Max	Unit	Note			
Total Distorsion 4.5 Gsps Fin = 1200 MHz 4.5 Gsps Fin = 2100 MHz 4.5 Gsps Fin = 2240 MHz 5.4 Gsps Fin = 1200 MHz 5.4 Gsps Fin = 2100 MHz 5.4 Gsps Fin = 2100 MHz 5.4 Gsps Fin = 2240 MHz		TD		65 64 64 61 61 61		dBFS	(2) (3)			
Total Harmonic Distorsion 4.5 Gsps Fin = 1200 MHz 4.5 Gsps Fin = 2100 MHz 4.5 Gsps Fin = 2240 MHz 5.4 Gsps Fin = 1200 MHz 5.4 Gsps Fin = 2100 MHz 5.4 Gsps Fin = 2240 MHz		THD		72 67 67 70 66 67		dBFS	(2) (3)			
Total Interleaving Distorsion 4.5 Gsps Fin = 1200 MHz 4.5 Gsps Fin = 2100 MHz 4.5 Gsps Fin = 2240 MHz 5.4 Gsps Fin = 1200 MHz 5.4 Gsps Fin = 2100 MHz 5.4 Gsps Fin = 2240 MHz		TILD		66 67 67 61 62 61		dBFS	(2) (3)			
DYNAMIC PERFORMANCE (single tone at -1 dBFS) 4 cores in parallel (Simultaneous mode) 1st value is without averaging / 2nd value is with real time averaging of 4 cores 4.5 GHz external clock, each core running at 1.125 Gsps 5.4 GHz external clock, each core running at 1.35 Gsps										
Effective Number Of Bits 4.5 GHz → 1.125Gsps Fin = 1200 MHz 4.5 GHz → 1.125Gsps Fin = 2100 MHz 4.5 GHz → 1.125Gsps Fin = 2240 MHz 5.4 GHz → 1.35Gsps Fin = 1200 MHz 5.4 GHz → 1.35Gsps Fin = 2100 MHz 5.4 GHz → 1.35Gsps Fin = 2240 MHz		ENOB		9.0 / 9.5 8.2 / 8.6 7.9 / 8.2 9.0 / 9.4 8.2 / 8.6 7.8 / 8.1		Bit_FS	(2) (3) (4)			
Spurious Free Dynamic Range 4.5 GHz → 1.125Gsps Fin = 1200 MHz 4.5 GHz → 1.125Gsps Fin = 2100 MHz 4.5 GHz → 1.125Gsps Fin = 2240 MHz 5.4 GHz → 1.35Gsps Fin = 1200 MHz 5.4 GHz → 1.35Gsps Fin = 2100 MHz 5.4 GHz → 1.35Gsps Fin = 2240 MHz		SFDR		67 / 67 59 / 59 58 / 58 65 / 65 59 / 59 59 / 59		dBFS	(2) (3)			
Signal to Noise Ratio 4.5 GHz → 1.125Gsps Fin = 1200 MHz 4.5 GHz → 1.125Gsps Fin = 2100 MHz 4.5 GHz → 1.125Gsps Fin = 2240 MHz 5.4 GHz → 1.35Gsps Fin = 1200 MHz 5.4 GHz → 1.35Gsps Fin = 2100 MHz 5.4 GHz → 1.35Gsps Fin = 2240 MHz		SNR		56.6 / 60.1 53.1 / 56.5 51.7 / 54.2 56.6 / 60.2 53.0 / 56.3 51.3 / 53.9		dBFS	(2) (3) (4)			
Signal to Noise and Distorsion 4.5 GHz → 1.125Gsps Fin = 1200 MHz 4.5 GHz → 1.125Gsps Fin = 2100 MHz 4.5 GHz → 1.125Gsps Fin = 2240 MHz 5.4 GHz → 1.35Gsps Fin = 1200 MHz 5.4 GHz → 1.35Gsps Fin = 2100 MHz 5.4 GHz → 1.35Gsps Fin = 2240 MHz		SINAD		56 / 59 51 / 54 50 / 51 56 / 58 51 / 54 49 / 51		dBFS	(2) (3)			
Total Harmonic Distorsion 4.5 GHz → 1.125Gsps Fin = 1200 MHz 4.5 GHz → 1.125Gsps Fin = 2100 MHz 4.5 GHz → 1.125Gsps Fin = 2240 MHz 5.4 GHz → 1.35Gsps Fin = 1200 MHz 5.4 GHz → 1.35Gsps Fin = 2100 MHz 5.4 GHz → 1.35Gsps Fin = 2240 MHz		THD		64 / 64 56 / 57 54 / 54 63 / 63 56 / 57 53 / 53		dBFS	(2) (3)			
4 cores in parallel (Simultaneous mode 1st value is without averaging / 2nd value 4.5 GHz external clock, each core running 5.4 GHz external clock, each core running	DYNAMIC PERFORMANCE (single tone at -6 dBFS) 4 cores in parallel (Simultaneous mode) 1st value is without averaging / 2nd value is with real time averaging of 4 cores 4.5 GHz external clock, each core running at 1.125 Gsps									
Effective Number Of Bits 4.5 GHz → 1.125Gsps Fin = 1200 MHz 4.5 GHz → 1.125Gsps Fin = 2100 MHz 4.5 GHz → 1.125Gsps Fin = 2240 MHz 5.4 GHz → 1.35Gsps Fin = 1200 MHz 5.4 GHz → 1.35Gsps Fin = 2100 MHz 5.4 GHz → 1.35Gsps Fin = 2240 MHz		ENOB		9.5 / 10.1 9.0 / 9.5 9.0 / 9.5 9.4 / 9.9 9.0 / 9.5 9.0 / 9.5		Bit_FS	(2) (3) (4)			

Parameter	Test Level	Symbol	Min	Тур	Max	Unit	Note
Spurious Free Dynamic Range 4.5 GHz → 1.125Gsps Fin = 1200 MHz 4.5 GHz → 1.125Gsps Fin = 2100 MHz 4.5 GHz → 1.125Gsps Fin = 2240 MHz 5.4 GHz → 1.35Gsps Fin = 1200 MHz 5.4 GHz → 1.35Gsps Fin = 2100 MHz 5.4 GHz → 1.35Gsps Fin = 2240 MHz		SFDR		79 / 79 71 / 71 69 / 69 75 / 76 70 / 71 68 / 69		dBFS	(2) (3)
Signal to Noise Ratio 4.5 GHz → 1.125Gsps Fin = 1200 MHz 4.5 GHz → 1.125Gsps Fin = 2100 MHz 4.5 GHz → 1.125Gsps Fin = 2240 MHz 5.4 GHz → 1.35Gsps Fin = 1200 MHz 5.4 GHz → 1.35Gsps Fin = 2100 MHz 5.4 GHz → 1.35Gsps Fin = 2240 MHz		SNR		59.0 / 62.7 56.7 / 60.0 56.3 / 59.6 58.7 / 61.8 57.0 / 60.0 56.3 / 59.3		dBFS	(2) (3) (4)
Signal to Noise and Distorsion 4.5 GHz → 1.125Gsps Fin = 1200 MHz 4.5 GHz → 1.125Gsps Fin = 2100 MHz 4.5 GHz → 1.125Gsps Fin = 2240 MHz 5.4 GHz → 1.35Gsps Fin = 1200 MHz 5.4 GHz → 1.35Gsps Fin = 2100 MHz 5.4 GHz → 1.35Gsps Fin = 2240 MHz		SINAD		59 / 62 56 / 59 56 / 59 58 / 61 56 / 59 56 / 59		dBFS	(2) (3)
Total Harmonic Distorsion 4.5 GHz → 1.125Gsps Fin = 1200 MHz 4.5 GHz → 1.125Gsps Fin = 2100 MHz 4.5 GHz → 1.125Gsps Fin = 2240 MHz 5.4 GHz → 1.35Gsps Fin = 1200 MHz 5.4 GHz → 1.35Gsps Fin = 2100 MHz 5.4 GHz → 1.35Gsps Fin = 2240 MHz		THD		70 / 72 66 / 67 66 / 67 68 / 70 66 / 67 66 / 67		dBFS	(2) (3)

Notes:

- 1. Input bandwidth of final silicon will be extended beyond 3GHz.
- 2. Dynamic performances of final product will be improved due to extended bandwidth.
- 3. See definition of terms in chapter 3.8.
- 4. Theoretical gain due to averaging is +1 bit on ENOB and +6dB on SNR. However, as 4 ADC cores are not perfectly matched, the actual gain is lower.

3.5. Timing and switching characteristics

Table 6. Transient and Switching Characteristics

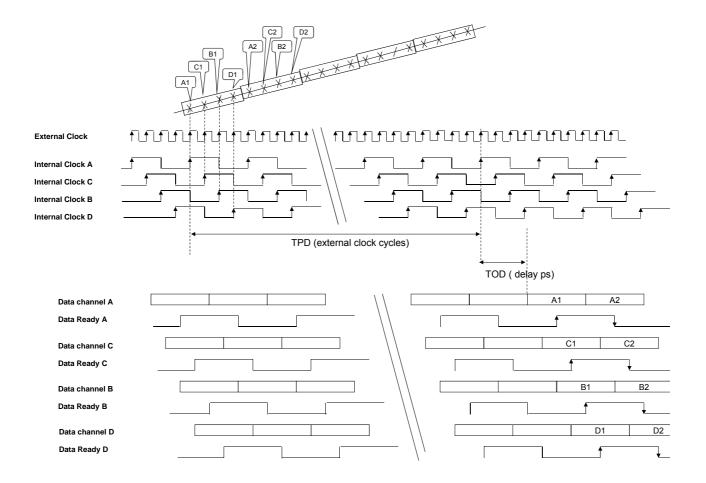
Parameter	Test Level	Symbol	Value	Unit	Note
SWITCHING PERFORMANCE					
Maximum operating clock frequency with CLOCK_DIV2 = 0 with CLOCK_DIV2 = 1 (clock divided by 2)		F _{CLK MAX}	5400 5400	MHz	(1) (2)
Minimum operating Clock frequency with CLOCK_DIV2 = 0 with CLOCK_DIV2 = 1 (clock divided by 2)		F _{CLK MIN}	100 200	MHz	(1)
SPI maximum clock frequency		F _{SPI}	50	MHz	

Notes

- 1. Functionality CLOCK_DIV2 enables to divide by 2 in the frequency of the clock signal applied to the ADC. See chap 5.11.
- 2. For optimum dynamic performance, it is recommended to have a clock frequency higher than 500MHz

Table 7. Timing Characteristics

Parameter	Test Level	Symbol	Min	Тур	Max	Unit	Note
TIMING CHARACTERISTICS							
Aperture Delay		TA		60		ps	
ADC Aperture uncertainty		Jitter		150		fs rms	
Output rise time for DATA (20%-80%)		TR		380		ps	(1) (2)
Output fall time for DATA (20%-80%)		TF		380		ps	(1) (2)
Output rise time for DATA READY (20%-80%)		TR		380		ps	(1) (2)
Output fall time for DATA READY (20%-80%)		TF		380		ps	(1) (2)
Output Data Pipeline Delay = TPD+TOD		TPD	26 cc	26 cc	26 cc	external clock cycles	(1) (3)
		TOD	1.0	1.5	2.0	ns	(1)
Data Ready Reset delay		TRDR	35 cc + 1.0 ns	35 cc + 1.8 ns	35 cc + 2.5 ns	external clock cycles	(1) (3)
Data to Data Ready delay		TD1		TBD		ps	(1) (4)
Data Ready to Data delay		TD2		TBD		ps	(1) (4)
Minimum SYNC pulse width		TSYNC_MI N	32 cc			external clock cycles	(3)
Maximum SYNC pulse width		TSYNC_M AX		-	-	ns	(5)
SCLK to CSN delay			1/2			SCLK clock cycle	


Notes

- 1. See definition of terms in chapter 3.8.
- 2.50Ω // C_{LOAD} = 2pF termination (for each single-ended output). Termination load parasitic capacitance derating value: 50ps/pF (ECL).
- 3. cc = external clock cycle at full speed
- 4. See chap. 3.5.2. for description of TD1/TD2
- 5. There is no maximum duration for SYNC pulse width. Only the SYNC rising edge is taken into account.

3.5.1. Timing diagrams for functional mode

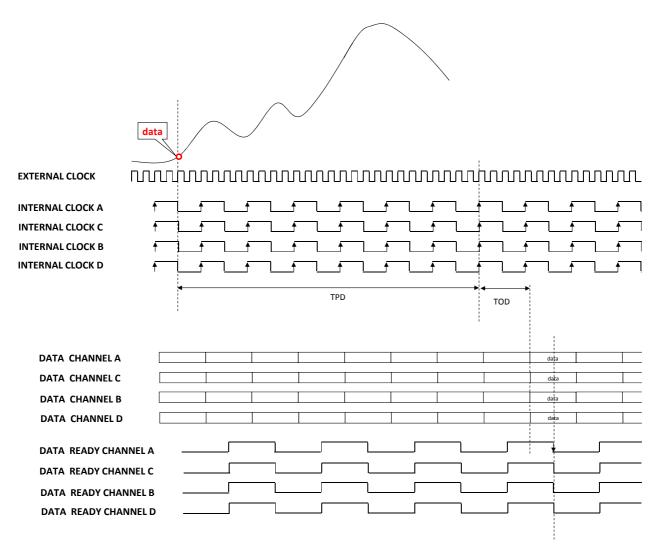
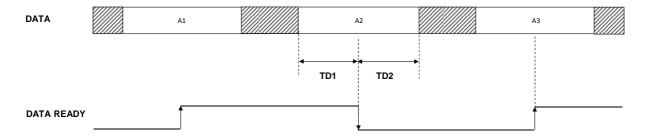

For the information on the reset sequence (using SYNC, SYNCN signals), please refer to section 0. The functional mode is the default mode, no programming is needed.

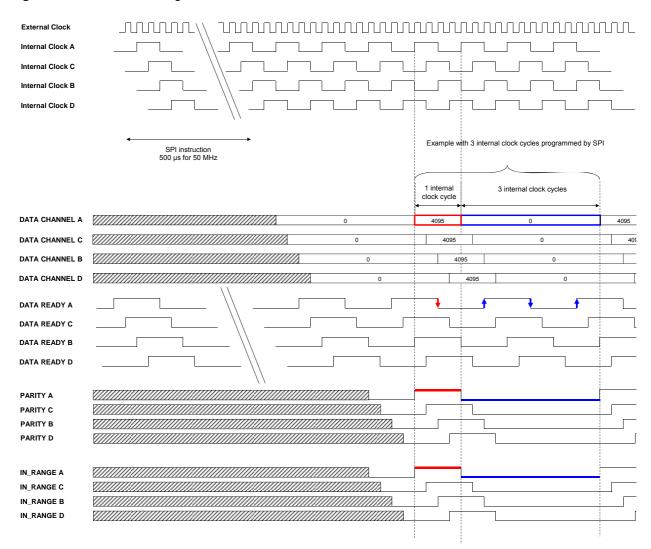
Figure 3. ADC Timing in staggered mode (4 ADC cores interleaved)

TPD +TOD = OUTPUT DATA PIPELINE DELAY


Figure 4. ADC Timing in simultaneous mode or simultaneous sampling (4 ADC cores sampling the same signal)

TPD +TOD = OUTPUT DATA PIPELINE DELAY

3.5.2. Centering of Data Ready on output data timing (TD1/TD2)


Figure 5. Centering of Data Ready signal on output data

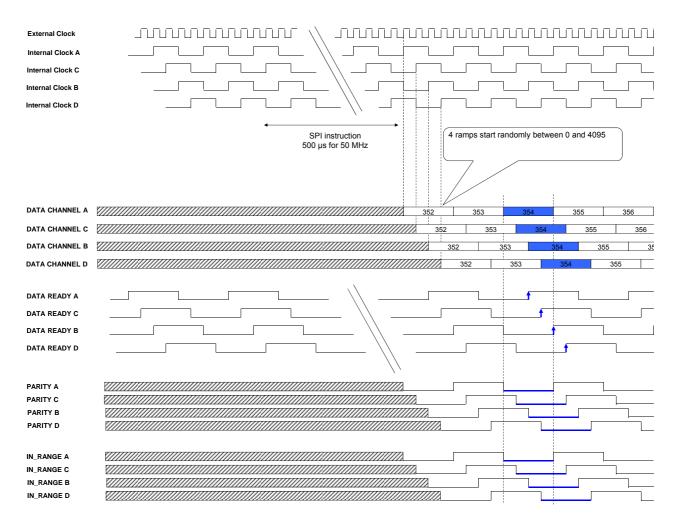
3.5.3. Timing diagram for Flash mode

Flash mode can be used to synchronize ADC with a FPGA. Flash mode starts immediately after the end of the SPI Writing.

Figure 6. ADC Timing in Flash mode with 4 ADC cores interleaved

Example with FLASH_LENGTH = 3 1 internal clock cycle = 4 external clock cycles

External Clock Internal clock A Internal clock C Internal clock B Internal clock D SPI instruction 500 µs for 50 MHz Example with 3 internal clock cycles programmed by SPI 3 internal clock cycles 1 internal clock cycle DATA CHANNEL A 1111111111111 00000000000 00000000000 DATA CHANNEL C 1111111111111 000000000000 111111111111 000000000000 DATA CHANNEL B 00000000000 1111111111111 000000000000 111111111111 1111111111111 DATA CHANNEL D 00000000000 1111111111111 DATA READY A DATA READY B DATA READY C DATA READY D PARITY A PARITY C PARITY B PARITY D IN RANGE A IN RANGE C IN_RANGE B IN_RANGE D


Figure 7. ADC Timing in flash mode with 4 ADC cores sampling the same signal

Example with FLASH_LENGTH=3
1 internal clock cycle = 4 external clock cycles

3.5.4. Timing diagram for Ramp mode

The Ramp mode can be used in order to have a visual way to debug.

Figure 8. ADC Timing in ramp mode with 4 ADC cores interleaved

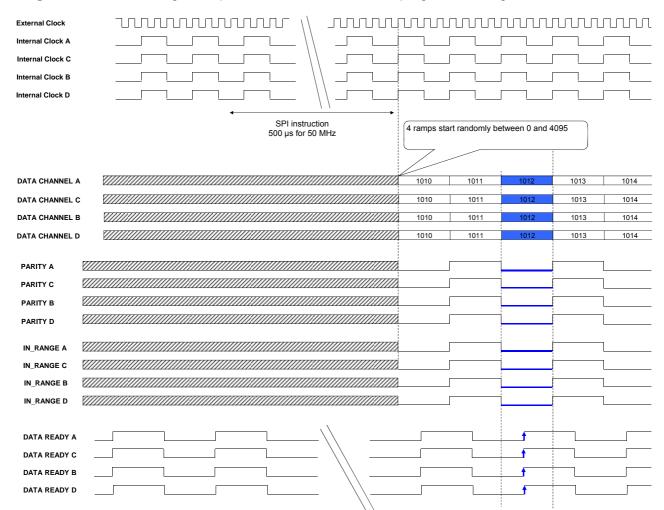


Figure 9. ADC Timing in ramp mode with 4 ADC cores sampling the same signal

3.6. Explanation of test levels

Not yet available.

3.7. Digital Output Coding

Table 8. ADC Digital output coding table

Differential analog input	Voltage level	Binary MSB (bit 11)LSB(bit 0) Out-of-Range
> + 500.125 mV	>Top end of full scale + ½ LSB	11111111111 1
+ 500.125 mV + 500 mV	Top end of full scale + ½ LSB Top end of full scale - ½ LSB	11111111111 0 11111111110 0
+ 0.125 mV - 0.125 mV	Mid scale + ½ LSB Mid scale - ½ LSB	10000000000 01111111111
- 500 mV -500.125 mV	Bottom end of full scale + ½ LSB Bottom end of full scale - ½ LSB	00000000001 000000000000
< - 500.125 mV	< Bottom end of full scale - ½ LSB	00000000000 1

Out-of-Range output bit is flagged to level 1 when the analog input exceeds the ADC Full-Scale. In that condition, output code is clamped to code 0 or 4095.

3.8. Definition of Terms

Abbreviation	Term	Definition					
(Fs max)	Maximum Sampling Frequency	Value for which functionality and performance are no more guaranteed above this frequency.					
(Fs min)	Minimum Sampling frequency	Sampling frequency for which the ADC begins to have loss in distortion. Performances are not guaranteed below this frequency.					
(FPBW)	Full power input bandwidth	Analog input frequency at which the fundamental component in the digitally reconstructed output waveform has fallen by 3 dB with respect to its low frequency value (determined by FFT analysis) for input at Full Scale –1 dB (- 1 dBFS).					
(SINAD)	Signal to noise and distortion ratio	Ratio expressed in dBFS of the RMS signal amplitude to the RMS sum of all other spectral components, including the harmonics and interleaving spurs except DC.					
(SNR)	Signal to noise ratio	Ratio expressed in dBFS of the RMS signal amplitude to the RMS sum of all other spectral components excluding the twenty five first harmonics and interleaving spurs.					
(TD)	Total Distortion	TD expressed in dBFS is the root square quadratic sum of THD and TILD expressed in dBFS					
(TILD)	Total Interleaving Distortion	Ratio expressed in dBFS of the RMS sum of all interleaving spurs (Fc/4 \pm Fin, Fc/2-Fin, Fc/4), to the RMS input signal amplitude.					
(THD)	Total harmonic distortion	Ratio expressed in dBFS of the RMS sum of the first twenty five harmonic components, to the RMS input signal amplitude.					
(SFDR)	Spurious free dynamic range	Ratio expressed in dBFS of the RMS signal amplitude to the RMS value of the highest spectral component (peak spurious spectral component). The peak spurious component may or may not be a harmonic.					
(SFDR1)	Spurious free dynamic range	SFDR including interleaving spurs					
(SFDR2)	Spurious free dynamic range	SFDR excluding interleaving spurs					
(ENOB)	Effective Number Of Bits	ENOB = SINAD - 1.76 + 20 log (A / FS/2) 6.02 Where A is the actual input amplitude and FS is the full scale range of the ADC under test					
(DNL)	Differential non linearity	The Differential Non Linearity for an output code i is the difference between the measured step size of code i and the ideal LSB step size. DNL (i) is expressed in LSBs. DNL is the maximum value of all DNL (i). DNL error specification of less than 1 LSB guarantees that there are no missing output codes and that the transfer function is monotonic.					
(INL)	Integral non linearity	The Integral Non Linearity for an output code i is the difference between the measured input voltage at which the transition occurs and the ideal value of this transition. INL (i) is expressed in LSBs, and is the maximum value of all INL (i) .					
(TA)	Aperture delay	Delay between the rising edge of the differential clock inputs (CLK, CLKN) (zero crossing point), and the time at which (XAI, XAIN where X = A, B C or D) is sampled.					
(JITTER)	Aperture uncertainty	Sample to sample variation in aperture delay. The voltage error due to jitter depends on the slew rate of the signal at the sampling point.					
(TPD)	Pipeline delay/latency	Number of clock cycles between the sampling edge of an input data and the associated output data being made available (not taking into account TOD delay)					
(TOD)	Digital data Output delay	Delay from the rising edge of the differential clock inputs (CLK, CLKN) (zero crossing point) to the next point of change in the differential output data (zero crossing) with					
(TDR)	Data ready output delay	specified load (not taking into account TPD delay). Delay from the rising edge of the differential clock inputs (CLK, CLKN) (zero crossing point) to the next point of change in the differential output data (zero crossing) with specified load.					
(TD1)	Time delay from Data transition to Data Ready	General expression is TD1 = TC1 + TDR – TOD with TC = TC1 + TC2 = 1 encoding clock period.					
(TD2)	Time delay from Data	General expression is TD2 = TC2 + TDR – TOD with TC = TC1 + TC2 = 1 encoding					

	Ready to Data	clock period.
(TC)	Encoding clock period	TC1 = Minimum clock pulse width (high) TC = TC1 + TC2
		TC2 = Minimum clock pulse width (low)
(TPD)	Pipeline Delay	Number of clock cycles between the sampling edge of an input data and the associated output data being made available, (not taking in account the TOD).
(TRDR)	Data Ready reset delay	Delay between the falling edge of the external clock after reset (SYNC, SYNCN) and the reset to digital zero transition of the Data Ready output signal (XDR, where $X = A$, B , C or D).
(TR)	Rise time	Time delay for the output DATA signals to rise from 20% to 80% of delta between low level and high level.
(TF)	Fall time	Time delay for the output DATA signals to fall from 20% to 80% of delta between low level and high level.
(IMD)	InterModulation Distortion	The two tones intermodulation distortion (IMD) rejection is the ratio of either input tone to the worst third order intermodulation products.
(NPR)	Noise Power Ratio	The NPR is measured to characterize the ADC performance in response to broad bandwidth signals. When applying a notch-filtered broadband white-noise signal as the input to the ADC under test, the Noise Power Ratio is defined as the ratio of the average out-of-notch to the average in-notch power spectral density magnitudes for the FFT spectrum of the ADC output sample test.
(VSWR)	Voltage Standing Wave Ratio	The VSWR corresponds to the ADC input insertion loss due to input power reflection. For example a VSWR of 1.2 corresponds to a 20dB return loss (ie. 99% power transmitted and 1% reflected).

4 Pin Description

4.1. Pinout View (Bottom view)

Figure 10. Pinout View

AD	GND	VCCD	BBP	BDR	BIR	GND	Diode A	GND	GND	SYNCP	GND	CLK	CLKN	GND	DNC	scik	mosi	VCCO2	GND	CIR	CDR	СВР	VCCD	GND
AC	GND	VCCD	BBPN	BDRN	BIRN	GND	DiodeC	NC	GND	SYNCN	GND	GND	GND	GND	rstn	csn	miso	VCCO2	GND	CIRN	CDRN	CBPN	VCCD	GND
АВ	B11	B11N	VCCD	GND	VCCD	GND	VCCD	GND	GND	VCCD	VCCD	GND	GND	VCCD	VCCD	GND	GND	VCCD	GND	VCCD	GND	VCCD	C11N	C11
AA	B10	B10N	VCCD	GND	VCCO1	VCCD	VCCD	GND	GND	VCCD	VCCD	GND	GND	VCCD	VCCD	GND	GND	VCCD	VCCD	VCCO1	GND	VCCD	C10N	C10
Υ	В9	B9N	VCCO1	GNDO	GNDO	VCC01	VCCD	GND	GND	VCCD	VCCD	GND	GND	VCCD	VCCD	GND	GND	VCCD	VCC01	GNDO	GNDO	VCC01	C9N	C9
w	В8	B8N	VCC01	GNDO	GNDO															GNDO	GNDO	VCC01	C8N	C8
v	В6	B6N	B7	B7N	GNDO															GNDO	C7N	С7	C6N	C6
U	B4	B4N	B5	B5N	VCC01															VCC01	C5N	C5	C4N	C4
т	B2	B2N	В3	B3N	GND															GND	C3N	С3	C2N	C2
R	В0	B0N	B1	B1N	VCCD															VCCD	C1N	C1	CON	C0
Р	GND	GND	NC	GND	VCCD															VCCD	GND	NC	GND	GND
N	VCCA	GND	VCCA	GND	VCCD															VCCD	GND	VCCA	GND	VCCA
М	VCCA	GND	VCCA	GND	VCCD															VCCD	GND	VCCA	GND	VCCA
L	GNID	GND	NC	GND	VCCD															VCCD	GND	NC	GND	GND
K	A0	AON	A1	A1N	VCCD															VCCD	D1N	D1	DON	D0
J	A2	A2N	А3	A3N	GND															GND	D3N	D3	D2N	D2
Н	A4	A4N	A5	A5N	VCC01															VCC01	D5N	D5	D4N	D4
G	A6	A6N	A7	A7N	GNDO															GNDO	D7N	D7	D6N	D6
F	A8	A8N	VCC01	GNDO	GNDO															GNDO	GNDO	VCC01	D8N	D8
E	А9	A9N	VCC01	GNDO	GNDO	VCC01	VCCD	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	VCCD	VCC01	GNDO	GNDO	VCC01	D9N	D9
D	A10	A10N	VCCD	GND	VCC01	VCCD	VCCD	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	VCCD	VCCD	VCC01	GND	VCCD	D10N	D10
С	A11	A11N	VCCD	GND	VCCD	VCCD	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	VCCD	VCCD	GND	VCCD	D11N	D11
В	GND	VCCD	ABPN	ADRN	AIRN	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	DIRN	DDRN	DBPN	VCCD	GND
Α	GND	VCCD	ABP	ADR	AIR	GND	CMIR ef AB	CMIRef CD	GND	GND	GND	VIN	VINN	GND	GND	GND	NC	NC	GND	DIR	DDR	DBP	VCCD	GND
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24

4.2. Pinout Table

Table 9.Pinout Table

Pin Label	Pin number	Description	Direction	Simplified electrical schematics
Power supp	lies			
GND	A1,B1,L1,P1,AC1,AD1, L2,P2,M2,N2, C4,D4,,L4,M4,N4,P4 AA4,AB4, J5,T5, A6,B6,AB6,AC6,AD6, B7,C7, B8,C8,D8,E8,Y8,AA8,AB8, AD8, A9,B9,C9,D9,E9,Y9,AA9,AB9,A C9,AD9, A10,B10,C10,D10,E10, A11,B11,C11,D11,E11,AC11, AD11, B12,C12,D12,E12,Y12,AA12, AB12,AC12, B13,C13,D13,E13,Y13,AA13, AB13,AC13, A14,B14,C14,D14,E14,AC14, AD14, A15,B15,C15,D15,E15, A16,B16,C16,D16,E16,Y16, AA16,AB16, B17,C17,D17,E17,Y17,AA17, AB17, B18,C18, A19,B19,AB19,AC19,AD19, J20,T20, C21,D21, L21,M21,N21,P21,AA21,AB21, L23, M23,N23,P23, A24,B24,L24,P24,AC24,AD24	Ground		All ground pins (GND and GNDO) must be connected to a one solid ground plane on board (Common ground)
GNDO	E4, F4,W4,Y4, E5, F5,G5,V5,W5,Y5, E20,F20,G20,V20,W20,Y20 E21, F21,W21,Y21	Ground for Digital outputs		
VCCA	M1,N1,M3,N3,M22,N22, M24,N24	Analog power supply (4.8V)		
VCCD	A2,B2,AC2,AD2, C3,D3,AA3,AB3, C5,K5,L5,M5,N5,P5,R5,AB5, C6,D6,AA6, D7,E7,Y7,AA7,AB7, Y10,AA10,AB10, Y11,AA11,AB11, Y14,AA14,AB14, Y15,AA15,AB15, D18,E18,Y18,AA18,AB18, C19,D19,AA19, C20,K20,L20,M20,N20,P20,R20, AB20 C22,D22,AA22,AB22, A23,B23,AC23,AD23,	Digital power supply (3.3V)		
VCCO1	E3,F3,W3,Y3, D5,H5,U5,AA5, E6,Y6, E19,Y19,D20,H20,U20,AA20, E22,F22,W22,Y22,	Output power supply (1.8V)		GNDO referenced
VCCO2	AC18, AD18,	Digital power supply (1.8V)		Note: GND referenced
Clock signa	l			l

Pin Label	Pin number	Description	Direction	Simplified electrical schematics		
CLK	AD12, AD13	In phase and Out of phase input clock signal	I	GND $10.9K\Omega$ 50Ω $CLKN$ $9.4 K\Omega$ $V_{CCD} = 3.3V$		
Analog inpu	ıt signals	I	<u> </u>			
VIN VINN	A12 A13	In phase analog input Out of phase analog input	I	VIN VCCA 2000		
CMIREFAB CMIREFCD	A7, A8	Output voltage reference In AC coupling operation this output could be left floating (not used) In DC coupling operation, these pins provides an output voltage witch is the common mode voltage for the analog input signal and should be used to set the common mode voltage of the input driving buffer.	0	50 Ω 200 Ω 200 Ω 1477 Ω CMIN CMIN GND 10k Ω GND GND GND		
Digital Outp	ut signals					
A0, A0N A1, A1N A2, A2N A3, A3N A4, A4N A5, A5N A6, A6N A7, A7N A8, A8N A9, A9N A10, A10N A11, A11N	K1, K2 K3, K4 J1, J2 J3, J4 H1, H2 H3, H4 G1, G2 G3, G4 F1, F2 E1, E2 D1, D2 C1, C2	Channel A in phase output data A0 is the LSB, A11 is the MSB Channel A out of phase output data A0N is the LSB, A11N is the MSB	0	V _{CCO} =1.8V VH VH OUT OUTN		
ABP, ABPN	A3, B3	Channel A output parity bit ABP Channel A out of phase parity bit ABPN	0	□ VLN		
AIR, AIRN	A5, B5	Channel A In Range bit AIR Channel A out of phase In Range bit AIRN	0			

Pin Label	Pin number	Description	Direction	Simplified electrical schematics
ADR ADRN	A4, B4	Channel A Output clock (Data Ready clock in DDR mode)	0	
B0, B0N B1, B1N B2, B2N B3, B3N B4, B4N B5, B5N B6, B6N B7, B7N B8, B8N B9, B9N B10, B10N B11, B11N	R1, R2 R3, R4 T1, T2 T3, T4 U1, U2 U3, U4 V1, V2 V3, V4 W1, W2 Y1, Y2 AA1, AA2 AB1, AB2	Channel B in phase output data B0 is the LSB, B11 is the MSB Channel B out of phase output data B11N is the LSB, B11N is the MSB	0	
BBP, BBPN	AD3, AC3	Channel B output parity bit BBP Channel B out of phase parity bit BBPN	0	V _{cco} =1.8V
BIR, BIRN	AD5, AC5	Channel B In Range bit BIR Channel B Out of phase In Range bit BIRN	0	VH VHN OUT OUTN
BDR, BDRN	AD4, AC4	Channel B Output clock (Data Ready clock in DDR mode)	0	I=3.5 mA
C0, C0N C1, C1N C2, C2N C3, C3N C4, C4N C5, C5N C6, C6N C7, C7N C8, C8N C9, C9N C10, C10N C11, C11N	R24, R23 R22, R21 T24, T23 T22, T21 U24, U23 U22, U21 V24, V23 V22, V21 W24, W23 Y24, W23 AA24, AA23 AB24, AB23	Channel C in phase output data C0 is the LSB, C11 is the MSB Channel C out of phase output data C0N is the LSB, C11N is the MSB	0	GND)
CBP, CBPN	AD22, AC22	Channel C output parity bit CPB Channel C out of phase parity bit CPBN	0	
CIR, CIRN	AD20, AC20	Channel C In Range bit CIR Channel C out of phase In Range bit CIRN	0	
CDR CDRN	AD21, AC21	Channel C Output clock (Data Ready clock in DDR mode)	0	
D0, D0N D1, D1N D2, D2N D3, D3N D4, D4N D5, D5N D6, D6N D7, D7N D8, D8N D9, D9N D10, D10N D11, D11N	K24, K23 K22, K21 J24, J23 J22, J21 H24, H23 H22, H21 G24, G23 G22, G21 F24, F23 E24, E23 D24, D23 C24, C23	Channel D in phase output data D0 is the LSB, D11 is the MSB Channel D out of phase output data D0N is the LSB, D11N is the MSB	0	
DBP, DBPN	A22, B22	Channel D output parity bit DBP Channel D out of phase parity bit DBPN	0	

Pin Label	Pin number	Description	Direction	Simplified electrical schematics
DIR, DIRN	A20, B20	Channel D In Range bit DIR	0	V _{cco} =1.8V
Dirk, Dirkit	7.20, 520	Channel D out of phase In Range bit DIRN	J	VH VHN
DDR DDRN	A21, B21	Channel D Output clock (Data Ready clock in DDR mode)	0	OUT OUTN VLN I=3.5 mA
SPI signals		·		
csn	AC16	SPI signal Input Chip Select signal (Active low) When this signal is active low, sclk is used to clock data present on MOSI or MISO signal Refer to section 5.2 for more information	I	
sclk	AD16	SPI signal Input SPI serial Clock Serial data is shifted into and out SPI synchronously to this signal on positive transition of sclk Refer to section 5.2 for more information	ı	
mosi	AD17	SPI signal Data SPI Input signal (Master Out Slave In) Serial data input is shifted into SPI while csn is active low Refer to section 5.2 for more information	ı	Non-inverting CMOS Schmitt-trigger input
rstn	AC15	SPI signal Input Digital asynchronous SPI reset (Active low) This signal allows to reset the internal value of SPI to their default value Refer to section 5.2 for more information	ı	
miso Other signa	AC17	SPI signal Data output SPI signal (Master In Slave Out) Serial data output is shifted out SPI while sidn is active low. MISO not tristated when inactive Refer to section 5.2 for more information	0	Output Pad 800hm 4mA

Pin Label	Pin number	Description	Direction	Simplified electrical schematics
SYNCP SYNCN	AD10 AC10	Differential Input Synchronization signal (LVDS) Active high signal This signal is used to synchronize internal ADC, Refer to section 0 for more information Equivalent internal differential 100Ω input resistor	I	GND 9.34K Ω SYNCP 50 Ω 15.3 K Ω V _{CCD} = 3.3V
DiodeA, DiodeC	AD7,AC7	Temperature diode Anode Temperature diode Cathode Refer to section 5.9 for more information. Note: it is mandatory to connect DiodeC to GND.	1	DiodeC GND DiodeA
NC	A17,A18,AC8,AD15, L3, P3, L22, P22,	Do Not Connect		

5 Theory Of Operation

5.1. Overview

Table 10.Functional Description

Name	Function		
'cca	4.8V Power		
/ _{cco}	1.8V Output Power Supply		
CCD	3.3V Digital Power Supply		
GND	Ground		
GNDO	Ground for digital outputs	V _{CCA}	= 4
VIN,VINN	Differential Analog Input	VIN, VINN 2,	Γ
CLK,CLKN	Differential Clock Input	VIN, VINN 2	•
[A0:A11] [A0N:A11N]	Channel A Differential Output Data		
AIR, AIRN	Channel A Differential Out of Range bit		
ABP, ABPN	Channel A Differential bit parity		
ADR, ADRN	Channel A Data Ready	CLK, CLKN 2	
[B0:B11]	Differential Output Clock Channel B	SYNCP, 2	
[B0.B11] [B0N:B11N	Differential Output Data	SYNCN 2	•
BIR, BIRN	Channel B Differential Out of Range bit	SCLK — MOSI —	>
BBP, BBPN	Channel B Differential bit parity	MISO ←	_
BDR, BDRN	Channel B Data Ready Differential Output Clock	RSTN —	
[C0:C11] [C0N:C11N]	Channel C Differential Output Data	DIODEA, DIODEC 2	
CIR, CIRN	Channel C Differential Out of	 	•
•	Range bit Channel C	4	
CBP, CBPN	Differential bit parity		—— GNDO
CDR, CDRN	Channel C Data Ready Differential Output Clock		
[D0:D11] [D0N:D11N]	Channel D Differential Output Data		
DIR, DIRN	Channel D Differential Out of Range bit		
DBP, DBPN	Channel D Parity bit	CSN	Chip Select Ir
DDR, DDRN	Channel D Data Ready Differential Output Clock	RSTN	SPI Asynchro
SYNCP, SYNCN	Synchronization of Data Ready (LVDS input)	MOSI	SPI input Data
SCLK	SPI Input Clock	DIODEA	Diode Anode I monitoring
MISO	SPI Output Data (Master In Slave Out) MISO should be pulled up to Vcc using 1K – 3K3 resistor Note: MISO not tristated when inactive	DIODEC	Diode Cathoo monitoring
CMIRefAB	Output voltage Reference for Input common Mode reference Core A & B	CMIRefCD	Output voltag Mode referer

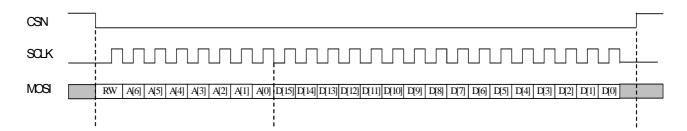
5.2. ADC Digital Interface (SPI: Serial Peripheral Interface)

The digital interface is a SPI with:

- 8 bits for the address A[7:0] including a Read Write bit A[7]is the MSB and the Read Write bit, A[0] is the LSB
- 16 bits of data D[15:0] with D[15] the MSB and D[0] the LSB.
- Half Duplex mode (see timing below)

5 signals are required:

- RSTN for the SPI reset;
- SCLK for the SPI clock;
- CSN for the Chip Select;
- MISO for the Master In Slave Out (SPI output)
- MOSI for the Master Out Slave In (SPI input)


MISO is not tristated when SPI not selected (MISO = GND when SPI not selected)

The MOSI sequence should start with one R/W bit:

- R/W = 0 is a read procedure
- R/W = 1 is a write procedure

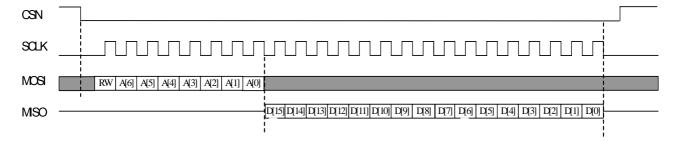

5.2.1. SPI TIMINGS

Figure 11. SPI writing (16-bit register)

D[15] is the MSB of the 16 bit data word D[0] is the LSB of the 16 bit data word A[6] is the MSB of the 7 bit address word A[0] is the LSB of the 7 bit address word Bit RW = 1 for writing

Figure 12. SPI reading

Bit RW = 0 for reading

See chapter 3.5 for SPI timing characteristics (max clock frequency, ...). MOSI must be generated on the falling edge of SCLK

5.2.2. SPI Register mapping

SPI Registers that are common to the four ADC cores are implemented in the MASTER SPI described in Table 11 (There are two exceptions for CRC_CHANNEL A to D and OFFSET_CHANNEL A to D). SPI Registers that are specific to one ADC core are described in Table 12.

Table 11. List of MASTER SPI registers

ADDRESS (hexa)	LABEL	DESCRIPTION	Read Write
00	Reserved	Must not be written	
01	CHANNEL_SELECT	Selection of channel (A,B,C, D) By default all channels are selected	RW
02	CHIP_ID	Chip ID and chip version	R
05	MASTER_STATUS	Notified when OTP value are available. CRC status	R
07	CLK_CTRL	Choice between aligned output clocks or staggered output clock. Choice between clock divided by 2 or not	RW
15	TEMP	Selection of 1 of the 2 sets of MASTER OTP written during manufacturing.	RW
16	OTP_SPI_SELECT	Selection between MASTER OTP or SPI value	RW
17	OFFSET_CHANNEL_A	Adjustment of channel A offset	RW
18	OFFSET_CHANNEL_B	Adjustment of channel B offset	RW
19	OFFSET_CHANNEL_C	Adjustment of channel C offset	RW
1A	OFFSET_CHANNEL_D	Adjustment of channel D offset	RW
1B	CM_IN	Adjustment of analog input common mode	RW
1C	R_IN	Adjustment of analog input impedance	RW
6B	OFFSET_CHANNEL_A	Reading of channel A offset	R
6C	OFFSET_CHANNEL_B	Reading of channel B offset	R
6D	OFFSET_CHANNEL_C	Reading of channel C offset	R
6E	OFFSET_CHANNEL_D	Reading of channel D offset	R
6F	CM_IN	Reading of analog input common mode	R
70	R_IN	Reading of analog input impedance	R

 Table 12.
 List of CHANNEL SPI registers (CHANNEL A, B, C and D)

ADDRESS (hexa)	LABEL	DESCRIPTION	Read Write
00	Reserved	Must not be written	
15	TEMP	Selection of one of the 2 sets of CHANNEL OTP written during the manufacturing	RW
16	OTP_SPI_SELECT	Selection between CHANNEL OTP or SPI value	RW
33	CAL1		RW
34	CAL2		RW
35	CAL3		RW
36	CAL4	7 Calibration parameters (for each channel) To be modified for custom interleaving only	RW
37	CAL5	To be modified for edución interfediving emy	RW
38	CAL6		RW
39	CAL7		RW
3A	GAIN_CHANNEL	Gain (for each channel) To be modified for custom interleaving only	RW
3B	INT_GAIN_CHANNEL	Internal gain (for each channel) To be modified for custom interleaving only	RW
3D	PHASE_ CHANNEL	Phase (for each channel) To be modified for custom interleaving only	RW
4F	CAL1	Calibration (OTP or SPI) sending to ADC core	R
50	CAL2	Calibration (OTP or SPI) sending to ADC core	R
51	CAL3	Calibration (OTP or SPI) sending to ADC core	R
52	CAL4	Calibration (OTP or SPI) sending to ADC core	R
53	CAL5	Calibration (OTP or SPI) sending to ADC core	R
54	CAL6	Calibration (OTP or SPI) sending to ADC core	R
55	CAL7	Calibration (OTP or SPI) sending to ADC core	R
56	GAIN_ CHANNEL	Calibration (OTP or SPI) sending to ADC core	R
57	INT_GAIN_CHANNEL	Calibration (OTP or SPI) sending to ADC core	R
59	PHASE_ CHANNEL	Calibration (OTP or SPI) sending to ADC core	R
5A	OTP_STATUS	Status signal for OTP. Notify when OTP values are available.	R
5C	STANDBY	Power down mode (for each channel)	RW
5D	TEST_MODE	Test Mode selection :	RW
5F	PRBS_CTRL	Pseudo Random Bit Sequence control	RW
66	RESET_DURATION	Data_ready reset duration	RW
69	FLASH_DURATION	Flash motif duration	RW
6A	SWING_ADJUST	Selection between nominal swing or reduced swing on Data output buffers (for power consumption reduction)	RW

All registers are 16-bit width R = read only register W = write only register RW = Read/Write register

5.3. Addressing MASTER SPI and CHANNEL SPI

Table 13 below describes how to address Master SPI or CHANNEL SPI.

Table 13. MASTER SPI - CHANNEL_SELECT register description

Bit	Bit														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													SE	HANNEL	 3:0>

Bit label	Value (binary)	Description	Default Setting (hexa)	Address for R/W (hexa)
	000	Channel A selected		
	001	Channel B selected		
CHANNEL SELECT <3:0>	010	Channel C selected	0004	01
CHAINNEL_SELECT <3.02	011	Channel D selected	0004	01
	100	ALL channels selected (default)		
	111	Master SPI selected		

CHANNEL SELECTION	V	VRITE II	NSTRU	CTION			READ INSTRUCTION			
CHANNEL_SELECTION	Master	Α	В	С	D	Master	Α	В	С	D
CHANNEL A SELECTED	OK	OK					OK			
CHANNEL B SELECTED	OK		OK					OK		
CHANNEL C SELECTED	OK			OK					OK	
CHANNEL D SELECTED	OK				OK					OK
ALL CHANNEL SELECTED	OK	OK	OK	OK	OK					
MASTER SELECTED	OK					OK				

Note: MASTER SPI is always accessible in writing.

Table 14. Example 1: OTP_SPI_SELECT is a register of the channel A, B, C, D and the MASTER SPI. It is the same address for channel and MASTER SPI

			Regist	er OTP_SPI_S	SELECT	
Order of SPI instruction	SPI Instruction (in hexa)	SPI MASTER	CHANNEL A	CHANNEL B	CHANNEL C	CHANNEL D
	Initial state (default value)	OTP value	OTP value	OTP value	OTP value	OTP value
1	Write @CHANNEL_SELECT 00 (A selected) Write @OTP_SPI_SELECT FFFF	OTP value	SPI value	OTP value	OTP value	OTP value
2	Write @CHANNEL_SELECT 01 (B selected) Write @OTP_SPI_SELECT FFFF	OTP value	SPI value	SPI value	OTP value	OTP value
3	Write @CHANNEL_SELECT 02 (C selected) Write @OTP_SPI_SELECT FFFF	OTP value	SPI value	SPI value	SPI value	OTP value
4	Write @CHANNEL_SELECT 03 (D selected) Write @OTP_SPI_SELECT FFFF	OTP value	SPI value	SPI value	SPI value	SPI value
5	Write @CHANNEL_SELECT 07 (MASTER selected) Write @OTP_SPI_SELECT FFFF	SPI value	SPI value	SPI value	SPI value	SPI value
6	Write @CHANNEL_SELECT 04 (All selected) Write @OTP_SPI_SELECT 0000	OTP value	OTP value	OTP value	OTP value	OTP value
7	Write @CHANNEL_SELECT 04 (All selected) Write @OTP_SPI_SELECT FFFF	SPI value	SPI value	SPI value	SPI value	SPI value

Table 15. EXAMPLE 2: STANDBY is a register of the channel A,B,C,D.

			Re	egister STANE	DBY	
Order of SPI instruction	SPI Instruction (in hexa)	SPI MASTER	CHANNEL A	CHANNEL B	CHANNEL C	CHANNEL D
1	Initial state (default value)	Not concerned	Power ON	Power ON	Power ON	Power ON
2	Write @CHANNEL_SELECT 04 (All selected) Write @STANDBY 0001	Not concerned	standby	standby	standby	standby
3	Write @CHANNEL_SELECT 00 (A selected) Write @STANDBY 0000	Not concerned	Power ON	standby	standby	standby
4	Write @CHANNEL_SELECT 01 (B selected) Write @STANDBY 0000	Not concerned	Power ON	Power ON	standby	standby
5	Write @CHANNEL_SELECT 02 (C selected) Write @STANDBY 0000	Not concerned	Power ON	Power ON	Power ON	standby
6	Write @CHANNEL_SELECT 03 (D selected) Write @STANDBY 0000	Not concerned	Power ON	Power ON	Power ON	Power ON
7	Write @CHANNEL_SELECT 04 (all selected) Write @STANDBY 0001	Not concerned	standby	standby	standby	standby
8	Write @CHANNEL_SELECT 04 (all selected) Write @STANDBY 0000	Not concerned	Power ON	Power ON	Power ON	Power ON

5.4. Selection between OTP and SPI registers

Some settings programmed during the manufacturing in OTP cells (One Time Programmable or fuses) can be modified by the user in applying its own settings via the SPI.

This selection is done thanks to the OTP_SPI_SELECT register defined in the MASTER SPI (described in Table 16 below) and the OTP_SPI_SELECT register defined in the CHANNEL SPI (described in Table 17 below).

 Table 16.
 MASTER SPI - OTP_SPI_SELECT register description

Bit (15 down to 4)	Bit 3	Bit 2	Bit 1	Bit 0
	0	SEL_R_IN	SEL_CM_IN	SEL_OFFSET_CHANNEL

Bit label	Value	Description	Default Setting (hexa)	Address for R/W (hexa)
SEL OFFSET CHANNEL	0 OFFSET_CHANNEL OTP values are selected			
SEL_OFFSET_CHANNEL	1	OFFSET_CHANNEL SPI registers are selected		
CEL CM IN	0	CM_IN OTP value is selected	0	16
SEL_CM_IN	1	CM_IN SPI register is selected	0	16
CEL D IN	0	R_IN OTP value is selected		
SEL_R_IN	1	R_IN SPI register is selected		

By default, OTP values are selected

OTP_SPI_SELECT is a common register with the CHANNEL A,B,C,D and MASTER SPI. That means it is the same address for CHANNEL and MASTER SPI.

Procedure example:

Below xxxx represents the value to be written by the user.

Changing R_IN calibration:

WRITE @ CHANNEL_SELECT 0007 # MASTER SPI is selected

WRITE @OTP_SPI_SELECT 0004 WRITE @R_IN xxxx # Now, R IN value comes from SPI register # The SPI R_IN value is taken into account

NB: The considered values for OFFSET CHANNEL and CM IN are OTP values

Changing OFFSET_CHANNEL calibration:

WRITE @ CHANNEL_SELECT 0007 # MASTER SPI is selected WRITE @OTP_SPI_SELECT 0001 # Now, OFFSET CHANNEL A,B,C,D values come from SPI register # The SPI OFFSET_CHANNEL_A value is taken into account WRITE @OFFSET_CHANNEL_A xxxx WRITE @OFFSET_CHANNEL_B xxxx # The SPI OFFSET_CHANNEL_B value is taken into account WRITE @OFFSET_CHANNEL_C xxxx WRITE @OFFSET_CHANNEL_D xxxx # The SPI OFFSET_CHANNEL_C value is taken into account # The SPI OFFSET_CHANNEL_D value is taken into account

NB: The considered values for R_IN and CM_IN are OTP values

Changing OFFSET_CHANNEL and R_IN calibration:

MASTER SPI is selected

WRITE @CHANNEL_SELECT 0007 WRITE @OTP_SPI_SELECT 0005 # Now, OFFSET_CHANNEL A,B,C,D and R_IN values come from SPI register

The SPI OFFSET_CHANNEL_A value is taken into account # The SPI OFFSET_CHANNEL_B value is taken into account # The SPI OFFSET_CHANNEL_C value is taken into account WRITE @OFFSET_CHANNEL_A xxxx WRITE @OFFSET_CHANNEL_B xxxx WRITE @OFFSET_CHANNEL_C xxxx WRITE @OFFSET_CHANNEL_D xxxx # The SPI OFFSET_CHANNEL_D value is taken into account

WRITE @R IN xxxx # The SPI R IN value is taken into account

NB: in order to avoid any confusion about channel, all procedures should begin with the instruction WRITE @CHANNEL_SELECT xxxx

Table 17. CHANNEL SPI - OTP_SPI_SELECT register description

Bit[15:10]	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit[3:0]
	0	OTP_SPI_S EL_CAL	OTP_SPI_S EL_GAIN	OPT_SPI_SEL_INT _GAIN		OTP_SPI_SEL _PHASE	

Bit label	Value	Description	Default Setting (hexa)	Address for R/W (hexa)
OTP SPI SEL PHASE	0	CHANNEL_PHASE OTP value is selected		
OTF_SFI_SEE_FTIASE	1	CHANNEL_PHASE SPI values are selected		
OTP SPI SEL INT GAIN	0	INTERNAL_GAIN OTP value is selected		
OTF_SFI_SEE_INT_GAIN	1	INTERNAL_GAIN SPI values is selected		
OTD CDI CEI CAIN	0	CHANNEL_GAIN OTP value is selected	0	16
OTP_SPI_SEL_GAIN	1	CHANNEL_GAIN SPI values is selected		
OTD CDL CCL CAL	0	CAL1 to CAL7 OTP values are selected		
OTP_SPI_SEL_CAL	1	CAL1 to CAL7 SPI values are selected		

By default, OTP values are selected

OTP SPI SELECT is a common register of the channel A.B.C.D and MASTER SPI. That means it is the same address for the channel and MASTER SPI

Procedure examples:

Below xxxx represents the value to be written by the user.

Changing CHANNEL_PHASE calibrations: WRITE @CHANNEL_SELECT 0000 WRITE @OTP_SPI_SELECT 0010

Channel A selected

Now, CHANNEL_PHASE A value comes from SPI register

All other settings (OFFSET_CHANNEL, CM_IN, R_IN, INT_GAIN, GAIN and

CAL1 to CAL7, CHANNEL_PHASE B, C & D) remains with OTP values # Only CHANNEL_PHASE A SPI value is taken into account WRITE @CHANNEL_PHASE xxxx

WRITE @CHANNEL SELECT 0001 # Channel B selected

WRITE @OTP SPI SELECT 0010 # Now, CHANNEL PHASE B value comes from SPI register

All other settings (OFFSET_CHANNEL, CM_IN, R_IN, INT_GAIN, GAIN and # CAL1 to CAL7, CHANNEL_PHASE C & D) remains with OTP values

WRITE @CHANNEL PHASE xxxx # Only CHANNEL PHASE A & B SPI values are taken into account

WRITE @CHANNEL_SELECT 0002 WRITE @OTP_SPI_SELECT 0010 # Channel C selected

Now, CHANNEL_PHASE C value comes from SPI register

All other settings (OFFSET_CHANNEL, CM_IN, R_IN, INT_GAIN, GAIN and

CAL1 to CAL7, CHANNEL_PHASE D) remains with OTP values # Only CHANNEL_PHASE A, B & C SPI values are taken into account

WRITE @CHANNEL SELECT 0003 # Channel D selected

WRITE @OTP_SPI_SELECT 0010 # Now, CHANNEL PHASE D value comes from SPI register

All other settings (OFFSET_CHANNEL, CM_IN, R_IN, INT_GAIN, GAIN and

CAL1 to CAL7) remains with OTP values

WRITE @CHANNEL PHASE xxxx # Only CHANNEL PHASE A, B, C & D SPI values are taken into account

If all CHANNEL_PHASE (A, B, C & D) have to switch from OTP to SPI, the following procedure is simpler and recommended:

Changing all CHANNEL PHASE calibrations:

WRITE @CHANNEL_PHASE xxxx

WRITE @CHANNEL_SELECT 0004 # ALL Channel + SPI MASTER selected

Now, CHANNEL_PHASE values come from SPI register WRITE @OTP_SPI_SELECT 0010

WRITE @CHANNEL SELECT 0000 # Channel A selected

The SPI value is taken into account WRITE @CHANNEL_PHASE xxxx

WRITE @CHANNEL SELECT 0001 # Channel B selected

WRITE @CHANNEL_PHASE xxxx # The SPI value is taken into account

WRITE @CHANNEL_SELECT 0002 # Channel C selected

The SPI value is taken into account WRITE @CHANNEL PHASE xxxx

WRITE @CHANNEL_SELECT 0003 # Channel D selected

WRITE @CHANNEL PHASE xxxx # The SPI value is taken into account

Changing CHANNEL PHASE and R IN calibration:

The procedure "Changing R_IN calibration" and "Changing CHANNEL_PHASE calibration" can be launched separately.

This procedure (12 instead 15 SPI instructions) can also be launched:

WRITE @CHANNEL_SELECT 0004 # ALL Channel + SPI MASTER selected

WRITE @OTP SPI SELECT 0014 # Now, CHANNEL PHASE and R IN value come from SPI register

WRITE @CHANNEL_SELECT 0007 # SPI MASTER selected

WRITE @R IN xxxx # The SPI value is taken into account

WRITE @CHANNEL_SELECT 0000 # Channel A selected

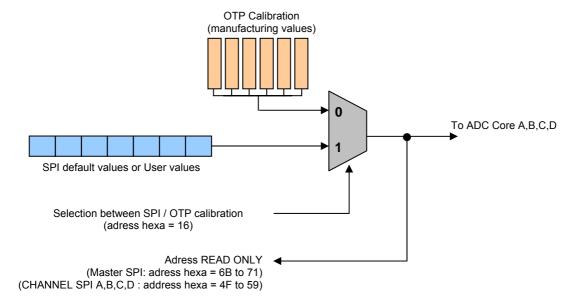
WRITE @CHANNEL_PHASE xxxx # The SPI value is taken into account

WRITE @CHANNEL_SELECT 0001 # Channel B selected

WRITE @CHANNEL_PHASE xxxx # The SPI value is taken into account

WRITE @CHANNEL_SELECT 0002 # Channel C selected

WRITE @CHANNEL_PHASE xxxx # The SPI value is taken into account


WRITE @CHANNEL_SELECT 0003 # Channel D selected

WRITE @CHANNEL PHASE XXXX # The SPI value is taken into account

NB: in order to avoid any confusion about channel, all procedures should begin with the instruction WRITE

@CHANNEL_SELECT xxxx

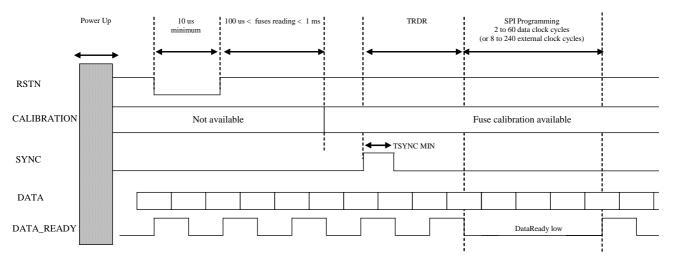
Figure 13. Selection between OTP and SPI registers

Note that reading at the READ ONLY address enables to verify the value really taken into consideration. Reading at the Read/Write address send the SPI default values or User values even if OTP calibration values are selected via OTP_SPI_SELECT register.

5.5. Functionalities summary

Table 18 provides a summary of all functionalities and indicates if it is configured by OTP (One Time Programmable) or by SPI registers.

 Table 18.
 Functionalities summary


Functionalities / mode	Default mode	Control	SPI registers	Comment
ADC synchronization with programmable reset duration	-	SPI	RESET_DURATION	A SYNC signal is mandatory to properly initialize and synchronize the 4 ADC channels. When reset output data ready are going to zero during a RESET_DURATION time which is set by the user via the SPI.
Core ADCs calibration	OTP during manufacturing	OTP	-	INL calibration of 4 ADC channels. Cannot be modified by user.
ADCs interleaving calibration	OTP during manufacturing	OTP / SPI	OFFSET_CHANNEL_X GAIN_CHANNEL INT_GAIN_CHANNEL PHASE_CHANNEL	X = A, B, C or D Manufacturing settings can be modified by user via the SPI
Temperature Range selection	Ambient & Hot temperature	SPI selection	TEMP	2 sets of ADCs interleaving calibration are programmed in OTP during manufacturing and can be selected by SPI 1 set for cold temperature 1 set for ambient and hot temperature
Junction temperature monitoring	-	-	-	External current source needed See diode characteristics in chap. 0
Staggered or Simultaneous mode	Staggered	SPI selection	CLK_CTRL	 In staggered mode 4 ADC channels are interleaved. Output data of each channel is delayed by 1/4 of external clock period In Simultaneous mode, 4 ADC channels are not interleaved and convert the same analog input signal. Output data of each channel are outputted simultaneously.
Clock control CLOCK_DIV2	No clock division	SPI selection	CLK_CTRL	2 modes available: CLOCK_DIV2 = 0: input clock is not divided CLOCK_DIV2 = 1: input clock is not divided by 2
Standby mode	No standby	SPI selection	STANDBY CHANNEL_SELECT	Power down mode. Data Ready outputs are stopped. Each channel is controlled individually
Swing Adjust	Reduced swing	SPI selection	SWING_ADJUST	Selection between 2 configurations for all output data and data ready outputs Standard LVDS (nominal swing) Reduced swing Reducing the swing enables to save around 180 mW
Analog input impedance calibration	OTP during manufacturing	OTP / SPI	R_IN	Manufacturing settings can be modified by user via the SPI
Analog input common mode calibration	OTP during manufacturing	OTP / SPI	CM_IN	Manufacturing settings can be modified by user via the SPI
Test Modes	disabled	SPI selection	TEST_MODE FLASH_DURATION	Ramp mode. Flash mode. Sequence duration is programmable via SPI
PRBS	Signal only	SPI selection	PRBS_CTRL	3 possible configurations for Pseudo Random Bit Sequence: PRBS only SIGNAL (output data from input signal) + PRBS SIGNAL only (default mode)
Chip identification	-	-	CHIP_ID	Identification of chip ID
CRC	-	SPI	MASTER_STATUS	Verification of OTP integrity (Cyclic Redundancy Check)
Parity Bit	-	-		1 dedicated output buffer by channel
In Range / Out of Range	-	-		1 dedicated output buffer by channel
OTP status	-	-	MASTER_STATUS OTP_STATUS	Verification of OTP status

5.6. Reset and start up procedure

RSTN is a global reset for the SPI and OTP (One Time Programmable registers or fuses) It is active Low. It is mandatory to put RSTN at low level during a minimum of 10 μ s. It will set ALL configuration registers to their default values.

- 1) Reset for digital and OTP (mandatory)
 - → Low state pulse on RSTN (10 µs minimum)
- 2) Wait for OTP awakening (wait 100 µs to 1 ms maximum)
- 3) Synchronisation of Data-Ready (not mandatory)
 - → High pulse on SYNC (See TSYNC MIN duration on Table 7)

Figure 14. Software reset and start up procedure

5.7. ADC Synchronization (SYNC) with programmable reset duration

5.7.1. ADC Synchronization (SYNC)

Synchronization is mandatory in order to have a deterministic order for the four output data ready. Synchronization is done through the SYNC, SYNCN signal which has LVDS electrical characteristics.

The SYNC is asynchronous regarding the external clock.

It is active high and should last at least the "TSYNC_MIN" time defined in Table 7 to work properly. It becomes effective on the rising edge of SYNC, SYNCN. The four data ready are reset after a time equal to TRDR defined in next diagram. During the reset phase the four data ready are stopped at low level during a period that can be adjusted through SPI.

It is recommended to verify that the synchronization is successful in reading register MASTER_STATUS defined in MASTER SPI (this verification is optional). See Table 19.

Note: after a successful SYNC and after being read, register SYNC_STATUS described below remains at 1 level. Be careful: if a new SYNC is sent to the ADC and if this SYNC is not correctly received by the circuit, the register will remain at 1 level.

Table 19. MASTER SPI - MASTER_STATUS register description

Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								CRC MASTER STATUS	CRC D STATUS	CRC C STATUS	CRC B STATUS	CRC A STATUS	0	SYNC STATUS	OTP STATUS

Bit label	Value	Description	Address Read Only (hexa)		
OTD STATUS	0	OTP data (master SPI only) are not ready.			
OTP_STATUS	1	OTP data (master SPI only) are ready and available			
CVNC CTATUS	0	4 channels synchronisation is failed			
SYNC_STATUS	1	4 channels synchronisation is successful			
CDC D STATUS	0	CRC check channel D failed			
CRC_D_STATUS	1	CRC check channel D is successful			
CDC C STATUS	0	CRC check channel C failed	05		
CRC_C_STATUS	1	CRC check channel C is successful	US		
CDC D STATUS	0	CRC check channel B failed			
CRC_B_STATUS	1	CRC check channel B is successful			
CDC A STATUS	0	CRC check channel A failed			
CRC_A_STATUS	1	CRC check channel A is successful			
CDC MASTER STATUS	0				
CRC_MASTER_STATUS	1				

PROCEDURE TO CHECK SYNC (only for 4 channels):
WRITE @CHANNEL_SELECT 0004 # ALL channels selected
WRITE @TEST_MODE 0001 # TEST_MODE enable

WRITE @CHANNEL_SELECT 0007 # MASTER SPI selected READ @SYNC_STATUS

⇒ 0 means: SYNC failed

⇒ 1 means: 4 channels synchronisation is successful

WRITE @CHANNEL_SELECT 0004 # ALL channels selected 0000 #TEST_MODE disable WRITE @TEST_MODE

5.7.2. **Data Ready reset duration programming**

The programming of Data Ready Reset duration is done in the CHANNEL SPI. The register RESET DURATION is described below:

 Table 20.
 CHANNEL SPI - RESET_DURATION register description

Bit	Bit	Bit	Bit												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											RES	SET_DUR	RATION <	5:0>	

Bit label	Description	Default Setting (hexa)	Address for R/W (hexa)
RESET_DURATION <5:0>	Programming of the reset duration. User can programme 2 to 63 internal clock cycles	0008	66

Note: there is one internal clock cycle uncertainty on the reset duration. See Figure 15 and Table 21 below.

Procedure for reset duration programming:

WRITE @01 0004 # ALL channel selected

WRITE @66 xxxx # Data Ready reset duration programming (2 to 63 output data period)

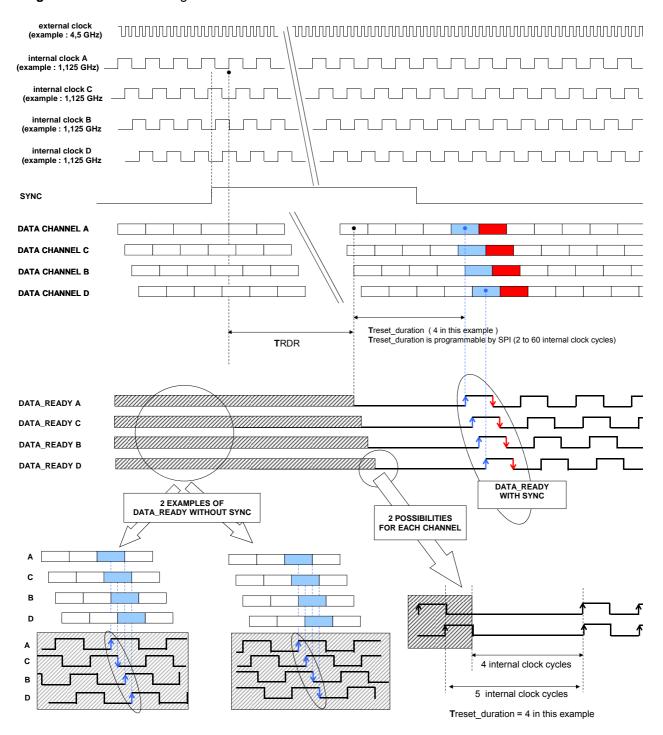

For example with an external clock of 5.4 GHz, data output period is equal to 1.35 GHz clock period. Programming 8 means Data Ready will stay to '0' during 8 internal clock period.

Table 21. Reset duration according to RESET_DURATION register

RESET_DURATION value (hexa)	Reset duration (external clock cycles)
3F	252
08	32
2	8
1	Not to be used
0	0 (no reset)
Excursion	244
Step	4

5.7.3. SYNC timing diagram

Figure 15. SYNC Timing

5.8. ADC calibration

5.8.1. Core ADCs calibrations

Each ADC core has its INL calibrated during the manufacturing. The user does not have to modify OTP calibrations dedicated to INL of ADC cores.

5.8.2. Core interleaving calibrations

Interleaving calibrations are done during the manufacturing and two sets of OTP calibration are available: one set is recommended for cold temperature (optimum near Tj=50°C) and another set of OTP calibration is recommended for ambient and hot temperature (optimum near Tj=90°C). The selection of these two sets of calibrations is explained in the paragraph below.

5.8.3. Selection of one of the 2 sets of TEMP calibration

The selection of a set of OTP calibration is done in both CHANNEL and MASTER SPI with TEMP register described below:

Table 22. CHANNEL & MASTER SPI - TEMP register description

| Bit |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| 15 | 14 | 13 | 15 | 14 | 13 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| | | | | | | | | | | | | | | | TEMP |

Bit label	Value	Description	Default Setting (hexa)	Address for R/W (hexa)
TEMP	0 OTP calibration for ambient and hot temperature selected		0	45
TEMP	1	OTP calibration for cold temperature selected	U	15

TEMP is a common register with the CHANNEL A,B,C,D and MASTER SPI. That means it is the same address for CHANNEL and MASTER SPI.

Procedure for selecting one set of TEMP calibration:

WRITE @01 0004 # ALL channels selected

WRITE @15 0001 # OTP calibration cold temperature selected for ALL channels

or

WRITE @01 0004 # ALL channels selected

WRITE @15 0000 # OTP calibration hot temperature selected for ALL channels

5.8.4. Interpolation of TEMP calibration (for temperature)

When the device is functioning at a junction temperature that is not close to Tj=50°C (cold calibration) or Tj=90°C (ambient and hot temperature), it is possible to interpolate linearly the OTP calibration settings to optimize dynamic performances.

The principle consists in reading the OTP value dedicated to the calibration at cold, then reading the OTP value dedicated to the calibration at ambient and hot temperature and then interpolate the value for the temperature of interest (Tj) and write it via the SPI.

Interpolation formula is given below:

Equation 1 - Interpolation formula

Register $(V_{diode}) = (R_0-R_1)/(787-830) * (V_{diode}-830) + R_1$

With:

41

Vdiode = Value of the diode of temperature for the considered temperature in mV. R_1 = Register when TEMP=1 is selected and R_0 =Register when TEMP=0. Register = each register listed in Table 23.

Registers to be interpolated over temperature are listed in Table 23 and described in chapter 5.8.4.1 to 5.8.4.5.

Table 23. List of registers to be interpolated over temperature for optimum calibrations.

Registers in MASTER SPI	Registers in CHANNEL SPI
OFFSET_CHANNEL_A	CAL1
OFFSET_CHANNEL_B	CAL2
OFFSET_CHANNEL_C	CAL3
OFFSET_CHANNEL_D	CAL4
	CAL5
	CAL6
	CAL7
	GAIN_CHANNEL
	INT_GAIN_CHANNEL
	PHASE_ CHANNEL

5.8.4.1. Description of OFFSET_CHANNEL A to D registers

 Table 24.
 MASTER SPI - OFFSET CHANNEL A register description

Bit	Bit	Bit	Bit	Bit	Bit	Bit									
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
									OFFSE	T_CHA	NNEL_A	\ <9:0>	•		

Bit label	Description	Default Setting (hexa)	Address for R/W (hexa)	Address for read only (hexa)
OFFSET_CHANNEL_A <9:0>	Channel A offset adjustment	0100	17	6B

Table 25. MASTER SPI - OFFSET CHANNEL B register description

Bit	Bit	Bit	Bit	Bit	Bit	Bit									
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
									OFFSE	T_CHA	NNEL_E	3 <9:0>			

Bit label	Description	Default Setting (hexa)	Address for R/W (hexa)	Address for read only (hexa)
OFFSET_CHANNEL_B <9:0>	Channel B offset adjustment	0100	18	6C

Table 26. MASTER SPI - OFFSET_CHANNEL_C register description

Bit	Bit	Bit	Bit	Bit	Bit	Bit									
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
									OFFSE	T_CHA	NNEL_C	<9:0>			

Bit label	Description	Default Setting (hexa)	Address for R/W (hexa)	Address for read only (hexa)
OFFSET_CHANNEL_C <9:0>	Channel C offset adjustment	0100	19	6D

Table 27. MASTER SPI - OFFSET_CHANNEL_D register description

Bit	Bit	Bit	Bit	Bit	Bit	Bit									
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
									OFFSE	T_CHA	NNEL_D	<9:0>			

Bit label	Description	Default Setting (hexa)	Address for R/W (hexa)	Address for read only (hexa)
OFFSET_CHANNEL_D <9:0>	Channel D offset adjustment	0100	1A	6E

Table 28. ADC Core offset adjustment according to OFFSET_CHANNEL_x register

OFFSET_CHANNEL_x value (hexa)	ADC Core x typical offset (LSB)
1FF	2020
100	2048
000	2075
Excursion	55
Step	0.11

5.8.4.2. Description of CAL1 to CAL7 registers

Table 29. CHANNEL SPI - CALx registers description

Bit	Bit	Bit	Bit	Bit	Bit	Bit									
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
									CALx <6:0>						

Bit label	Description	Default Setting	Address for R/W (hexa)	Address for read only (hexa)
CAL1 <6:0>	Channel CAL1	0040	33	4F
CAL2 <6:0>	Channel CAL2	0040	34	50
CAL3 <6:0>	Channel CAL3	0040	35	51
CAL4 <6:0>	Channel CAL4	0040	36	52
CAL5 <6:0>	Channel CAL5	0040	37	53
CAL6 <6:0>	Channel CAL6	0040	38	54
CAL7 <6:0>	Channel CAL7	0040	39	55

Procedure for CAL1 to 7 calibrations:

WRITE @CHANNEL_SELECT 0007 READ @OTP_SPI_SELECT

Master SPI selected # save bit(3:0)

Channel A selected

WRITE @CHANNEL_SELECT 0000

WRITE @CAL1 WRITE @CAL2 XXXX

XXXX

WRITE @CAL7

WRITE @OTP_SPI_SELECT bit(8) 1

CAL1 to CAL7 switching from OTP value to SPI value

WRITE @CHANNEL SELECT 0001 WRITE @CAL1 XXXX

XXXX

Channel B selected

WRITE @CAL2

WRITE @CAL7

XXXX

WRITE @OTP_SPI_SELECT bit(8) 1 # CAL1 to CAL7 switching from OTP value to SPI value

WRITE @CHANNEL_SELECT 0002 WRITE @CAL1 xxxx # Channel C selected

WRITE @CAL2 XXXX

WRITE @CAL7 XXXX

WRITE @OTP_SPI_SELECT bit(8) 1 # CAL1 to CAL7 switching from OTP value to SPI value

WRITE @CHANNEL_SELECT 0003 # Channel D selected

WRITE @CAL1 XXXX WRITE @CAL2 XXXX

XXXX

WRITE @CAL7
WRITE @OTP_SPI_SELECT bit(8) 1

CAL1 to CAL7 switching from OTP value to SPI value

5.8.4.3. Description of GAIN_CHANNEL registers

CHANNEL SPI - GAIN_CHANNEL register description Table 30.

Bit	Bit	Bit	Bit	Bit	Bit	Bit									
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			,						GAIN	_CHAN	NEL <9	:0>			

Bit label	Description	Default Setting (hexa)	Address for R/W (hexa)	Address for read only (hexa)
GAIN_CHANNEL <9:0>	ADC Core Gain for channel A, B, C or D	200	3A	56

Table 31. ADC Core Gain adjustment according to GAIN CHANNEL register

GAIN_CHANNEL value (hexa)	ADC Core typical gain (LSB)
3FF	3558
200	3873
000	4119
Excursion	464
Step	0.45

5.8.4.4. Description of INT_GAIN_CHANNEL registers

Table 32. SPI CHANNEL - INT_GAIN_CHANNEL register description

Bit	Bit	Bit	Bit	Bit	Bit										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
										INT_GA	AIN_CH	ANNEL	<7:0>		

Bit label	Description	Default Setting (hexa)	Address for R/W (hexa)	Address for read only (hexa)
INT_GAIN_CHANNEL <7:0>	Internal Gain for channel A, B, C or D	0080	3B	57

5.8.4.5. Description of PHASE_CHANNEL registers

Table 33. SPI_CHANNEL - PHASE_CHANNEL register description

Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		<u> </u>							PHAS	E_CHA	NNEL <	7:0>		

Bit label	Description	Default Setting (hexa)	Address for R/W (hexa)	Address for read only (hexa)
PHASE_CHANNEL <7:0>	Phase for channel A, B, C or D	080	3D	59

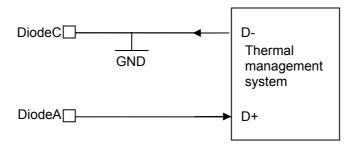
Table 34. ADC Core Phase adjustment according to PHASE CHANNEL register

PHASE_CHANNEL value (hexa)	ADC Core typical Phase (ps)
FF	0.9
80	0
00	-0.9
Excursion	1.8
Step	0.007

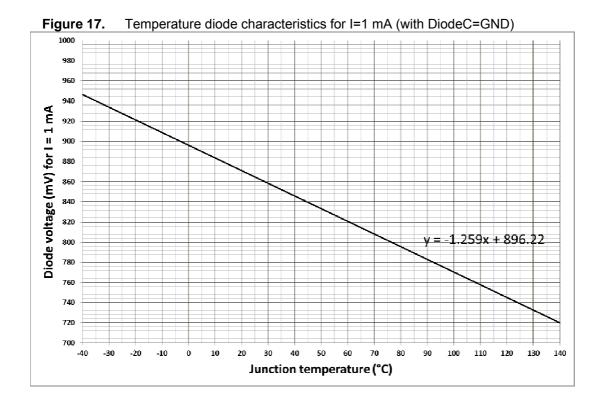
5.8.4.6. Procedure for interpolation of TEMP calibration

Procedure for interpolation of calibration versus temperature:

```
WRITE @CHANNEL SELECT 0007
                                                       # MASTER SPI selected
WRITE @TEMP
                                                       # Temperature 0 selected (ambient & hot temperature)
READ @OFFSET_CHANNEL_A (read only register)
READ @OFFSET_CHANNEL_B (read only register)
                                                       # READ OTP calibration OFFSET temperature 0 for channel A
                                                       # READ OTP calibration OFFSET temperature 0 for channel B
READ @OFFSET_CHANNEL_C (read only register)
                                                       # READ OTP calibration OFFSET temperature 0 for channel C
READ @OFFSET_CHANNEL_D (read only register)
                                                       # READ OTP calibration OFFSET temperature 0 for channel D
WRITE @TEMP
                                                       # Temperature 1 selected (cold temperature)
READ @OFFSET_CHANNEL_A (read only register)
READ @OFFSET_CHANNEL_B (read only register)
                                                       # READ OTP calibration OFFSET temperature 1 for channel A
                                                       # READ OTP calibration OFFSET temperature 1 for channel B
READ @OFFSET_CHANNEL_C (read only register)
                                                       # READ OTP calibration OFFSET temperature 1 for channel C
READ @OFFSET_CHANNEL_D (read only register)
                                                       # READ OTP calibration OFFSET temperature 1 for channel D
# All OFFSET calibrations were read
# Do calibration interpolation on each OFFSET registers in using the formula given in Equation 1
WRITE @OFFSET_CHANNEL_A xxxx (RW register)
WRITE @OFFSET_CHANNEL_B xxxx (RW register)
WRITE @OFFSET_CHANNEL_C xxxx (RW register)
WRITE @OFFSET_CHANNEL_D xxxx (RW register)
WRITE @OTP_SPI_SELECT 0001
                                              # Only OFFSET_CHANNEL A, B, C & D switch from OTP to SPI value
WRITE @CHANNEL_SELECT 0004
                                              # ALL Channels selected
WRITE @TEMP
                                              # Temperature 0 selected (ambient & hot temperature)
                              0000
WRITE @CHANNEL SELECT 0000
                                              # channel A selected
READ @CAL1
                                              # READ channel A calibration CAL1 temperature 0
READ @CAL2
READ @CAL3
READ @CAL4
READ @CAL5
READ @CAL6
READ @CAL7
WRITE @CHANNEL_SELECT 0001
                                              # channel B selected
READ @CAL1
READ @CAL2
```


```
READ @CAL3
READ @CAL4
READ @CAL5
READ @CAL6
READ @CAL7
WRITE @CHANNEL_SELECT 0002
                                       # channel C selected
READ @CAL1
READ @CAL2
READ @CAL3
READ @CAL4
READ @CAL5
READ @CAL6
READ @CAL7
WRITE @CHANNEL_SELECT 0003
                                       # channel D selected
READ @CAL1
READ @CAL2
READ @CAL3
READ @CAL4
READ @CAL5
READ @CAL6
READ @CAL7
WRITE @CHANNEL_SELECT 0004
                                       # ALL Channels selected
WRITE @TEMP
                         0001
                                       # Temperature 1 selected (cold temperature)
WRITE @CHANNEL_SELECT 0000
                                       # channel A selected
READ @CAL1
                                       # READ channel A calibration CAL1 temperature 1
READ @CAL2
READ @CAL3
READ @CAL4
READ @CAL5
READ @CAL6
READ @CAL7
WRITE @CHANNEL_SELECT 0001
                                       # channel B selected
READ @CAL1
READ @CAL2
READ @CAL3
READ @CAL4
READ @CAL5
READ @CAL6
READ @CAL7
WRITE @CHANNEL SELECT 0002
                                       # channel C selected
READ @CAL1
READ @CAL2
READ @CAL3
READ @CAL4
READ @CAL5
READ @CAL6
READ @CAL7
WRITE @CHANNEL_SELECT 0003
                                       # channel D selected
READ @CAL1
READ @CAL2
READ @CAL3
READ @CAL4
READ @CAL5
READ @CAL6
READ @CAL7
# All calibrations were read
# Do calibration interpolation on each CALx registers in using the formula given in Equation 1
WRITE @CHANNEL SELECT 0000
                                       # channel A selected
                                       # Write channel A calibration CAL1
WRITE @CAL1 xxxx
WRITE @CAL2 xxxx
WRITE @CAL3 xxxx
WRITE @CAL4 xxxx
WRITE @CAL5 xxxx
WRITE @CAL6 xxxx
WRITE @CAL7 xxxx
WRITE @CHANNEL_SELECT 0001
                                       # channel B selected
```

```
WRITE @CAL1 xxxx
WRITE @CAL2 xxxx
WRITE @CAL3 xxxx
WRITE @CAL4 xxxx
WRITE @CAL5 xxxx
WRITE @CAL6 xxxx
WRITE @CAL7 xxxx
WRITE @CHANNEL_SELECT 0002
                                           # channel C selected
WRITE @CAL1 xxxx
WRITE @CAL2 xxxx
WRITE @CAL3 xxxx
WRITE @CAL4 xxxx
WRITE @CAL5 xxxx
WRITE @CAL6 xxxx
WRITE @CAL7 xxxx
WRITE @CHANNEL_SELECT 0003
                                           # channel D selected
WRITE @CAL1 xxxx
WRITE @CAL2 xxxx
WRITE @CAL3 xxxx
WRITE @CAL4 xxxx
WRITE @CAL5 xxxx
WRITE @CAL6 xxxx
WRITE @CAL7 xxxx
WRITE @CHANNEL_SELECT 0004
                                           # ALL Channels selected
WRITE @OTP_SPI_SELECT 0101
                                           # OFFSET CHANNEL A, B, C & D remain with SPI value
                                           # CAL1 to CAL7 for channels A, B, C & D switch from OTP to SPI value
Proceed as per CALx with GAIN_CHANNEL,
# Read temperature 0 and temperature 1
# Do calibration interpolation on each GAIN CHANNEL registers in using the formula given in Equation 1
# Write interpolated values
WRITE @CHANNEL_SELECT 0004
WRITE @OTP_SPI_SELECT 0181
                                            # ALL Channels selected
                                            # OFFSET_CHANNEL A, B, C & D remain with SPI value
                                            # CAL1 to CAL7 for channels A, B, C & D remain with SPI value
                                            # GAIN_CHANNEL for channel A, B, C, D switch from OTP to SPI value
Proceed as per CALx with INT_GAIN_CHANNEL,
# Read temperature 0 and temperature 1
# Do calibration interpolation on each GAIN_CHANNEL registers in using the formula given in Equation 1
# Write interpolated values
WRITE @CHANNEL SELECT 0004
                                            # ALL Channels selected
WRITE @OTP_SPI_SELECT 01C1
                                            # OFFSET CHANNEL A, B, C & D remain with SPI value
                                            # CAL1 to CAL7 for channels A, B, C & D remain with SPI value
                                            # GAIN_CHANNEL for channel A, B, C, D remain with SPI value
                                            # INT GAIN CHANNEL for channel A,B,C,D switch from OTP to SPI value
Proceed as per CALx with PHASE_CHANNEL,
# Read temperature 0 and temperature 1
# Do calibration interpolation on each GAIN_CHANNEL registers in using the formula given in Equation 1
# Write interpolated values
WRITE @CHANNEL SELECT 0004
                                            # ALL Channels selected
                                            # OFFSET_CHANNEL A, B, C & D remain with SPI value
WRITE @OTP_SPI_SELECT 01D1
                                            # CAL1 to CAL7 for channels A, B, C & D remain with SPI value
                                            # GAIN CHANNEL for channel A, B, C, D remain with SPI value
                                            # INT GAIN CHANNEL for channel A,B,C,D remain with SPI value
                                            # PHASE_CHANNEL for channel A,B,C,D switch from OTP to SPI value
```


5.9. Die Junction Temperature Monitoring Diode

DIODE: One pin is provided so that the diode can be probed using standard temperature sensors. The diode measures the junction temperature which is 7°C below the hot spot (but higher than die average temperature)

Figure 16. Junction temperature monitoring diode system

Note: If the diode function is not used, the diode pins can be left unconnected (open). If diode is used it is mandatory to connect DiodeC to GND.

5.10. Staggered or simultaneous mode

It is possible to select one of the two modes described below in using the register CLOCK_CTRL defined in Table 35 in the MASTER SPI.

Table 35. MASTER SPI - CLK_CTRL register description

Bit	Bit														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														CLOCK_ DIV2	CLOCK_ INTERLEAVING

Bit label	Value	Description	Default Setting (hexa)	Address for R/W (hexa)
CLOCK INTERLEAVING	0	The 4 clocks channel are aligned/simultaneous		
CLOCK_INTERLEAVING	1	The 4 clocks channel are staggered 1/4 phase shift for the 4 clocks (default value)		
OLOOK DIVO	0	No internal division of the frequency of input clock signal (default value)	0001	07
CLOCK_DIV2	1	Internal division (factor 2) of the frequency of input clock signal		

5.10.1. Staggered mode

This is the default mode where the output cores are shifted by ¼ of the external clock period. The ADC can be seen as an ADC with a DEMUX 1:4.

There are 3 possibilities for the staggered mode (ADC cores interleaved):

- 4 ADC cores powered ON. See timing diagram on Figure 3.
- ADC cores A & B powered ON (C & D powered OFF)
- ADC cores C & D powered ON (A & B powered OFF)

When only 2 ADC cores are interleaved each clock channel are shifted by ½ of the external clock period

5.10.1. Simultaneous mode

In this mode each ADC core sample the same analog input signal and output the data simultaneously at the same time. This mode can be used for averaging.

See timing diagram on Figure 4.

In this mode, each ADC Core can be powered OFF as wished by the user (1 core ON, 2 cores ON, 3 cores ON or 4 cores ON)

5.11. CLOCK_DIV2: internal division of the clock frequency

It is possible (for debug purpose) to divide by two the clock frequency applied to the ADC. The clock division is done internally in addressing the CLK_CTRL register of MASTER SPI described in Table 35 above. By default there is no division by two of the input clock frequency.

5.12. Stand-by mode

li is possible to power down each core individually in addressing the STANDBY register defined in the CHANNEL SPI.

Table 36. CHANNEL SPI - STANDBY register description

| Bit |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---------|
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| | | | | | | | | | | | 0 | 0 | 0 | 0 | STANDBY |

Bit label	Value	Description	Default Setting (hexa)	Address for R/W (hexa)
CTANDDY	0	ADC Core(s) powered ON (no stand-by)	0	50
STANDBY	1	ADC Core(s) powered OFF (stand-by mode)	U	5C

Staggered mode is possible in the only case where 2 or 4 ADC cores are powered ON. See chap. 5.10.1. Simultaneous mode is possible with 1, 2, 3 or 4 ADC cores powered ON. When only one or two cores are powered ON, they can be selected indiscriminately (for instance Core B and Core D can be powered ON while others are OFF).

See chapter 5.3 for ADC core channel selection.

Procedure for ALL channels in STANDBY mode: WRITE @01 0004 # ALL channels selected

WRITE @5C 0001 # ALL channels are powered OFF (standby)

Procedure for channel A and B in STANDBY mode

WRITE @01 0000 # channel A selected WRITE @5C 0001 # channel A in standby mode

WRITE @01 0002 # channel B selected

WRITE @5C 0001 # channel B standby mode (A remains in standby mode)

Procedure for channel B,C,D in STANDBY mode

WRITE @01 0001 # channel B selected WRITE @5C 0001 # channel B in standby mode WRITE @01 0002 WRITE @5C 0001 # channel C selected

channel C in standby mode WRITE @01 0003 # channel D selected

WRITE @5C 0001 # channel D in standby mode (B & C remains in standby mode)

5.13. Swing Adjust

It is possible to select 2 types of swing for LVDS output data (including Data Ready outputs, Parity Bits and In Range bits):

- Standard LVDS output swing
- Reduced swing (leading to around 180mW power saving).

Reduced swing is the default mode, and a standard LVDS swing can be selected in addressing SWING_ADJUST register in the MASTER SPI.

Table 37. MASTER SPI - SWING_ADJUST register description

Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						SWING_ADJUST					0				

Bit label	Value	Description	Default Setting (hexa)	Address for R/W (hexa)
CIAUNO AD ILIOT	0	Reduced swing (for power saving)	0	C.A.
SWING_ADJUST	1	Standard LVDS swing	U	6A

5.14. Analog input impedance calibration

It is possible to modify the analog input impedance calibrated during manufacturing. The modification is done via the register R IN defined in the MASTER SPI.

To modify the R_IN value (from OTP), it is mandatory to modify register OTP_SPI_SELECT defined in the MASTER SPI: bit SEL_R_IN has to be set to 1 level.

 Table 38.
 MASTER SPI - OTP_SPI_SELECT register description

Bit (15 down to 4)	Bit 3	Bit 2	Bit 1	Bit 0
	0	SEL _R_IN	SEL_CM_IN	SEL_OFFSET_CHANNEL

Bit label	Value	Description	Default Setting (hexa)	Address for R/W (hexa)
CEL OFFCET CHANNEL	0	OFFSET_CHANNEL OTP values are selected		
SEL_OFFSET_CHANNEL	1	OFFSET_CHANNEL SPI registers are selected		
CEL CH IN	0	CM_IN OTP value is selected	0	40
SEL_CM_IN	1	CM_IN SPI register is selected	0	16
CEL D IN	0	R_IN OTP value is selected		
SEL_R_IN	1	R_IN SPI register is selected		

Table 39. MASTER SPI - R_IN register description

Bit	Bit	Bit														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
													R_IN <3:0>			

Bit label	Description	SPI Default Setting (hexa)	Address for R/W (hexa)	Address for read only (hexa)	
R_IN <3:0>	Analog input resistor value	8000	1C	70	

Table 40. Analog input impedance (R_{IN}) value according to R_IN register

R_IN value (hexa)	R_{IN} typ value (Ω)		
F	90		
8	100		
0	118		
Excursion	28		
Step	1.75		

Procedure to have only R_IN value from SPI while all other settings from OTP:

WRITE @ CHANNEL_SELECT 0007 # MASTER SPI is selected

WRITE @OTP_SPI_SELECT 0004 # Now, R_IN value comes from SPI register WRITE @R_IN xxxx # The SPI R_IN value is taken into account

Note: all other MASTER SPI settings come from OTP value (independently from previous configuration)

To conserve the previous configuration and change only R_IN, all bits of register OTP_SPI_SELECT have to remain unchanged except bit 2 (SEL_R_IN) that needs to be set to level 1.

5.15. Analog input common mode calibration

It is possible to modify the analog input common mode calibrated during manufacturing. The modification is done via the register CM_IN defined in the MASTER SPI.

To modify the CM_IN value (from OTP), it is mandatory to modify register OTP_SPI_SELECT defined in the MASTER SPI: bit SEL_CM_IN has to be set to 1 level.

Table 41. MASTER SPI - OTP_SPI_SELECT register description

Bit (15 down to 4)	Bit 3	Bit 2	Bit 1	Bit 0		
	0	SEL_R_IN	SEL_CM_IN	SEL_OFFSET_CHANNEL		

Bit label	Value	Description	Default Setting (hexa)	Address for R/W (hexa)	
CEL OFFCET CHANNEL	0	OFFSET_CHANNEL OTP values are selected			
SEL_OFFSET_CHANNEL	1	1 OFFSET_CHANNEL SPI registers are selected			
CEL CM IN	0	CM_IN OTP value is selected	0	16	
SEL_CM_IN	1	CM_IN SPI register is selected		16	
CEL D.W	0	R_IN OTP value is selected			
SEL_R_IN	1	R_IN SPI register is selected			

Table 42. MASTER SPI - CM_IN register description

Bit	Bit	Bit													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												CM	_IN <4:	0>	

Bit label	Description	SPI Default Setting (hexa)	Address for R/W (hexa)	Address for read only (hexa)	
CM_IN <4:0>	Analog input common mode value	0010	1B	6F	

Table 43. CMIRef value according to CM_IN register

CM_IN value (hexa)	CMIRef typical value for V _{CCA} = 4.8V (Volt)				
1F	3.21				
10	3.40				
0	3.61				
Excursion	0.40				
Step	13.10 ⁻³				

Procedure to have only CM_IN value from SPI while all other settings from OTP:

MASTER SPI is selected

WRITE @ CHANNEL_SELECT 0007
WRITE @OTP_SPI_SELECT 0002
WRITE @CM_IN xxxx # Now, CM_IN value comes from SPI register # The SPI CM_IN value is taken into account

Note: all other MASTER SPI settings come from OTP value (independently from previous configuration)

To conserve the previous configuration and change only CM_IN, all bits of register OTP_SPI_SELECT have to remain unchanged except bit 1 (SEL_CM_IN) that needs to be set to level 1.

5.16. Test modes: Flash and Ramp

Two test modes can be used for debug and testability:

- Flash mode is useful to align the interface between the ADC and the FPGA.
- In Ramp mode, the data output is a 12 bit ramp on the four ADC cores

The activation of these test modes are done the CHANNEL SPI via the TEST_MODE register described below:

 Table 44.
 CHANNEL SPI - TEST_MODE register description

Bit	Bit	Bit	Bit	Bit											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
										TI	EST_M	DDE <5	:0>		TEST_ENA

Bit label	Value (binary)	Description	Default Setting	Address for R/W (hexa)
TEST_ENA	0	Test mode disabled (defaul value)		
TEST_ENA	1	Test mode enabled		
	000 001 Reserved			
	000 010	00 010 Reserved		50
TEST MODE (5:0)	000 110	000 110 Flash mode selected		5D
TEST_MODE <5:0>	000 100	000 100 Ramp mode selected		
	111 000	11 000 Reserved		
	110 000	Reserved		

The duration of the flash can be modified via the FLASH_DURATION register defined in CHANNEL SPI.

 Table 45.
 CHANNEL SPI - FLASH_DURATION register description

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
											FLA	SH_DUR	ATION <5	5 :0>	

Bit label	Description	Default Setting (hexa)	Address for R/W (hexa)
FLASH_DURATION <5:0>	Programming of the flash duration. User can programme 2 to 60 internal clock cycles	0018	69

Procedure for FLASH_DURATION adjustment: WRITE @CHANNEL_SELECT 0004 WRITE @FLASH_DURATION xxxx

ALL channels selected

 Table 46.
 Flash duration according to FLASH_DURATION register

FLASH_DURATION value (hexa)	Flash duration (external clock cycles)			
3F	256			
1F	128			
18	100			
2	12			
1	8			
0	Not to be used			
Excursion	248			
Step	4			

5.17. PRBS: Pseudo Random Bit Sequence

The PRBS could be used as a test mode (recognition by FPGA of the sequence sent by the ADC) or data scrambling. The idea is to add the same pseudo random bit to all output data including Parity bit and In Range bit.

When this mode is activated, the Pseudo Random Bit is sent every N clock cycles, with N ranging from 1 to 31. PRBS uses the following polynomial to generate the sequence: $X' + X^6 + 1$

Figure 18. PRBS encoding data

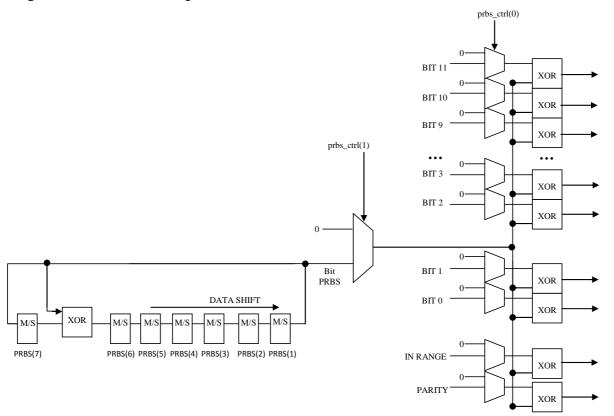


Table 47. CHANNEL SPI - PRBS_CTRL description

Bit	Bit														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														PRBS_MODE	PRBS_ENA

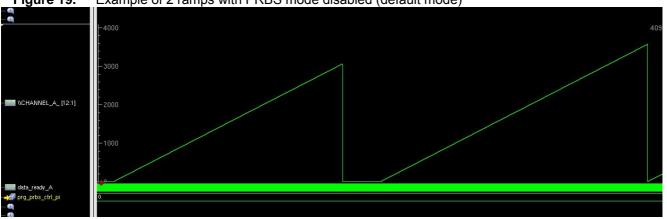
Bit label	Value	Description	Default Setting	Address for R/W (hexa)	
DDDC FNA	0 PRBS disabled (default)				
PRBS_ENA	1	PRBS enabled		5F	
DDD0 MODE	0	SIGNAL enabled default)	0		
PRBS_MODE	1	SIGNAL disabled			

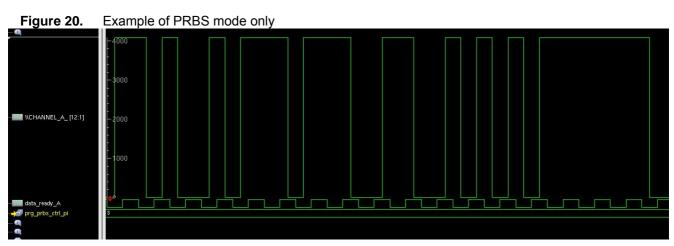
Procedure to launch PRBS mode: WRITE @CHANNEL_SELECT 0004

ALL channels selected # PRBS ONLY

WRITE @PRBS_CTRL 0003 WRITE @PRBS_CTRL 0001

PRBS+SIGNAL


Procedure to stop PRBS mode: WRITE @PRBS_CTRL 0000


SIGNAL ONLY


By default PRBS mode is disabled.

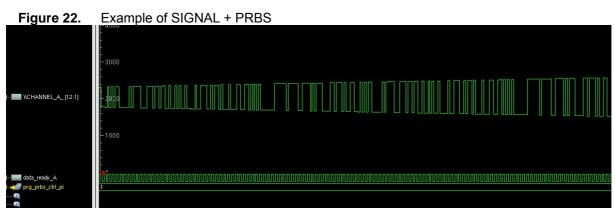

A SYNC pulse synchronizes the PRBS on the 4 channels.

Figure 19. Example of 2 ramps with PRBS mode disabled (default mode)

5.18. Chip identification

It is possible to select read the chip ID in using the register CHIP_ID defined in the MASTER SPI.

Chip ID is 0x624 for all part numbers except for EVP12AS350TP-V2 whose chip ID is 0x618

Procedure to read CHIP_ID: WRITE @CHANNEL_SELECT 0007 READ @CHIP_ID

MASTER SPI selected

5.19. CRC

It is possible to read CRC status of OTP: this verification is optional.

Reference CRC values written in OTP during manufacturing can be compared to values recalculated after the SPI procedure described below. The result of the comparison is written in the MASTER_STATUS register defined in MASTER SPI.

 Table 48.
 MASTER SPI - MASTER_STATUS register description

Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								CRC MASTER STATUS	CRC D STATUS	CRC C STATUS	CRC B STATUS	CRC A STATUS	0	SYNC STATUS	OTP STATUS

Bit label	Value	Description	Address Read Only (hexa)		
OTD STATUS	0	OTP data (master SPI only) are not ready.			
OTP_STATUS	1	OTP data (master SPI only) are ready and available			
CANC STATUS	0	4 channel synchronisation is failed			
SYNC_STATUS	1	4 channel synchronisation is successful			
CDC D STATUS	0	CRC check channel D failed	<u>s</u>		
CRC_D_STATUS	1	CRC check channel D is successful			
ODG G STATUS	0	CRC check channel C failed	05		
CRC_C_STATUS	1	CRC check channel C is successful	05		
CDC D STATUS	0	CRC check channel B failed			
CRC_B_STATUS	1	CRC check channel B is successful			
CDC A STATUS	0	CRC check channel A failed			
CRC_A_STATUS	1	CRC check channel A is successful	1		
CDC MACTED STATUS	0	CRC check MASTER failed			
CRC_MASTER_STATUS	1	CRC check MASTER is successful			

PROCEDURE TO CHECK CRC:

RSTN WRITE @01 0004 WRITE @5D 0001 WAIT 4500 external clock cycles

WRITE @01 0007

READ @05

low state during 10 µs min # ALL Channels selected

TEST_MODE enabled (clock used to calculate CRC is activated) # Minimum waiting time for CRC calculation

MASTER SPI selected # read bit (7 down to 3)

⇒ 1 means OK⇒ 0 means CRC failed

5.20. OTP status

It is possible to verify that OTP cells are awaken (fuses are ready to be used) in reading OTP_STATUS defined in CHANNEL SPI (see Table 49) and MASTER_STATUS defined in MASTER SPI (see Table 50)

Table 49. CHANNEL SPI - OTP_STATUS register description

Bit	Bit	Bit	Bit	Bit	Bit										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
										OTP_STATUS					

Bit label	Value	Description	Address (Read Only) (hexa)	
OTD STATUS	0	OTP (CHANNEL SPI only) are not ready	- 5A	
OTP_STATUS	1	OTP (CHANNEL SPI only) are ready and available		

This signal starts to 0 level and goes to 1 level, 1 ms maximum after the digital reset.

Table 50. MASTER SPI - MASTER_STATUS register description

Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								CRC MASTER STATUS	CRC D STATUS	CRC C STATUS	CRC B STATUS	CRC A STATUS	0	SYNC STATUS	OTP STATUS

Bit label	Value	Description	Address Read Only (hexa)
OTP STATUS	0	OTP data (master SPI only) are not ready.	
OIF_SIATOS	1	OTP data (master SPI only) are ready and available	
CVAIC CTATUE	0	4 channel synchronisation is failed	
SYNC_STATUS	1	4 channel synchronisation is successful	
CDC D CTATUS	0	CRC check channel D failed	
CRC_D_STATUS	1	CRC check channel D is successful	
CDC C CTATUC	0	0.5	
CRC_C_STATUS	1 CRC check channel C is successful		05
CDC B STATUS	0 CRC check channel B failed		
CRC_B_STATUS	1	CRC check channel B is successful	
CDC A CTATUS	0	CRC check channel A failed	
CRC_A_STATUS	1	CRC check channel A is successful	
CDC MACTED CTATUS	0	CRC check MASTER failed	
CRC_MASTER_STATUS	1	CRC check MASTER is successful	

PROCEDURE TO CHECK OTP STATUS:

OTP_STATUS is available 1 ms after a reset (pin RSTN)

WRITE @01 0007 READ @05 # MASTER SPI selected

OTP_STATUS register read only

WRITE @01 0000 # Channel A selected

OTP_STATUS register read only READ @5A

WRITE @01 0001 # Channel B selected

READ @5A # OTP_STATUS register read only

WRITE @01 0002 # Channel C selected

READ @5A # OTP_STATUS register read only

WRITE @01 0003 # Channel D selected

READ @5A # OTP_STATUS register read only

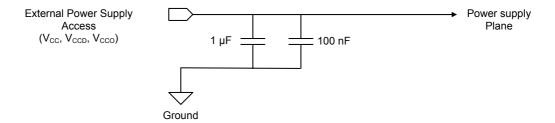
⇒ READ 1 means OTP are ready

⇒ READ 0 means OTP doesn't work!

5.21. Parity Bit

The parity of the 12 output bit of each data is calculated in performing an XOR combination between the 12-bit of output data.

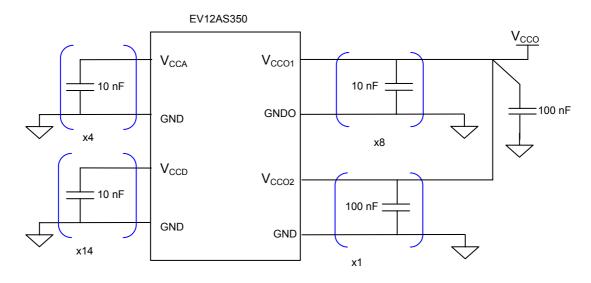
5.22. In Range / Out of Range Bit


In Range / Out of Range bits (AIR/AIRN, BIR/BIRN, CIR/CIRN, DIR/DIRN) are switched to level 1 when the analog input exceed ADC Full scale. See chap. 3.7.

6 Application Information

6.1. Bypassing, decoupling and grounding

All power supplies have to be decoupled to ground as close as possible to the signal accesses to the board by 1 μ F in parallel to 100 nF.


Figure 23. EV12AS350 Power supplies Decoupling and grounding Scheme

Note: GND, and GNDO planes should be separated but the two power supplies must be reconnected by a strap on the board.

It is recommended to decouple all power supplies to ground as close as possible to the device balls with 10 nF capacitors for V_{CCA} , V_{CCD} and V_{CCO1} and 100 nF for V_{CCO2} . The minimum number of decoupling pairs of capacitors can be calculated as the minimum number of groups of neighboring pins as described in Figure 24 and Table 51.

Figure 24. EV12AS350 Power Supplies Bypassing recommended Scheme

The 100nF capacitor on VCCO supply between VCCO1 and VCCO2 is intended to avoid any coupling of VCCO1 noise (output buffers) on VCCO2 (digital supply) and reciprocally.

 Table 51.
 List of recommended neighboring pins for VCCA decoupling (4 groups)

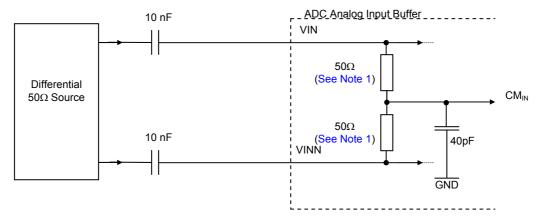
Decoupling (10nF)	VCCA	GND
Group 1	Pins N24, M24	Pins L24, P24, N23, M23
Group 2	Pins N22, M22	Pins N21, M21
Group 3	Pins M3, N3	Pins N4, M4
Group 4	Pins M1, N1	Pins P1, N2, M2, L1

 Table 52.
 List of recommended neighboring pins for VCCD decoupling (14 groups)

Decoupling (10 nF)	VCCD	GND
Group 1	Pins A2, B2, C3, D3	Pins A1, B1, C4, D4
Group 2	Pins C5, C6, D6, D7, E7	Pins A6, B6, B7, C7, C8, D8, E8
Group 3	Pins K5, M5, L5	Pins J5, L4
Group 4	Pins N5, P5, R5	Pins P4, T5
Group 5	Pins AA3, AB3, AC2, AD2	Pins AD1, AC1, AB4, AA4
Group 6	Pins AA6, AA7, Y7, AB5, AB7	Pins AB6, AC6, AD6, AA8, Y8
Group 7	Pins Y10, Y11, AA10, AA11, AB10, AB11	Pins Y9, Y12, AA9, AA12
Group 8	Pins AA14, AA15, AB14, AB15, Y14, Y15	Pins Y13, Y16, AA13, AA16, AB16
Group 9	Pins Y18, AA18, AA19, AB18, AB20	Pins AB19, AA17, Y17
Group 10	Pins AD23, AC23, AB22, AA22	Pins AA21, AB21, AC24, AD24
Group 11	Pins R20, P20, N20	Pins T20, P21
Group 12	Pins M20, L20, K20	Pins J20, L21
Group 13	Pins A23, B23, C22, D22	Pins D21, C21, B24, A24
Group 14	Pins C19, C20, D18, D19, E18	Pins A19, B19, B18, C18, C17, D17, E17

Table 53. List of recommended neighboring pins for VCCO1 decoupling (8 groups)

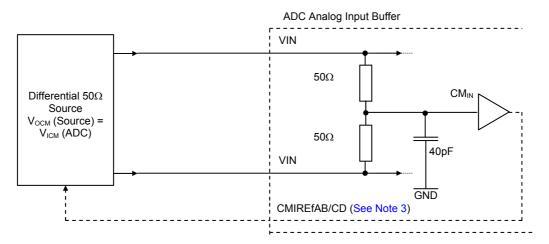
Decoupling (10 nF)	VCCO1	GNDO
Group 1	Pins F22, E22	Pins E21, F21
Group 2	Pins H20, E19, D20	Pins G20, F20, E20
Group 3	Pins W22, Y22	Pins Y21, W21
Group 4	Pins AA20, Y19, U20	Pins Y20, W20, V20
Group 5	Pins Y3, W3	Pins W4, Y4
Group 6	Pins AA5, Y6, U5	Pins Y5, W5, V5
Group 7	Pins H5, E6, D5	Pins G5, F5, E5
Group 8	Pins F3, E3	Pins F4, E4


 Table 54.
 List of recommended neighboring pins for VCCO2 decoupling (1 group)

Decoupling (100 nF)	VCCO2	GND
Group 1	Pins AC18, AD18	Pins AC19, AD19

6.2. Analog Inputs (VIN/VINN)

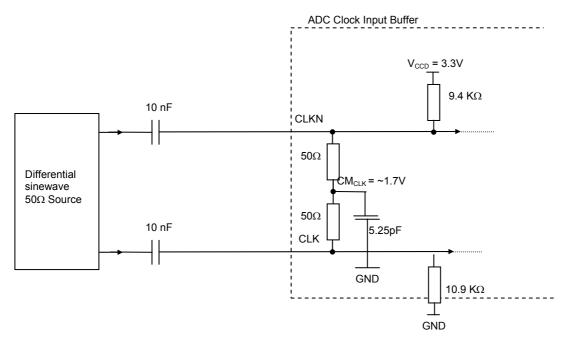
The analog input can be either DC or AC coupled as described in Figure 25 and Figure 26.


Figure 25. Differential analog input implementation (AC coupled)

Notes:

- 1. The 50Ω terminations are on chip.
- 2. CM_{IN} value is given in Table 3.

Figure 26. Differential analog input implementation (DC coupled)

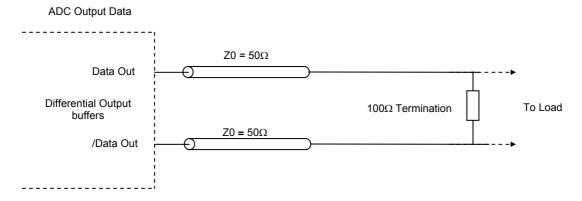

Notes:

1. CMIRefAB/CD value is given in Table 3.

6.3. Clock Inputs (CLK/CLKN)

It is recommended to enter the clock input signal in differential mode. Since the clock input common mode is around 1.7V, it is recommended to AC couple the input clock as described below.

Figure 27. Differential clock input implementation (AC coupled)

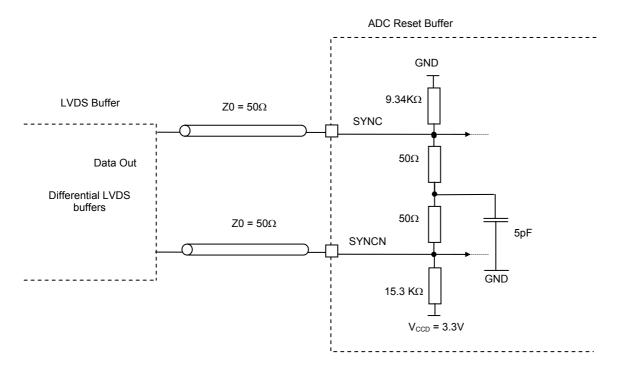


Differential mode is the recommended input scheme. Single ended input is not allowed due to performance limitations.

6.4. Digital Outputs

The digital outputs are LVDS compatible (Output Data, Parity Bit, Out of Range bit and Data Ready). They have to be 100Ω differentially terminated.

Figure 28. Differential digital outputs Terminations ($100\Omega \text{ LVDS}$)


Each Digital output should always be terminated by 100Ω differential resistor placed as close as possible to differential receiver.

Note: If not used, leave the pins of the differential pair open.

6.5. Reset Buffer (SYNC, SYNCN)

The SYNC, SYNCN signal has LVDS electrical characteristics.

Figure 29. Reset Buffer (SYNC, SYNCN)

Note: If not used, leave the pins of the differential pair open

6.6. Procedure for synchronisation with FPGA

RSTN 10 µs minimum (active low state)

FLASH_DURATION & RESET_DURATION programming:

Write @01 0004 # Register : CHANNEL_SELECT (all channels selected)

Write @66 00xx # Register : RESET_DURATION (Duration of DataReady frozen to low level)

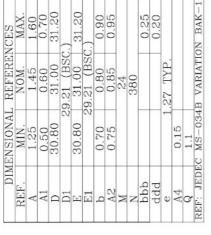
Write @69 00xx # Register : FLASH DURATION

Write @5D 0001 # TEST_MODE enabled

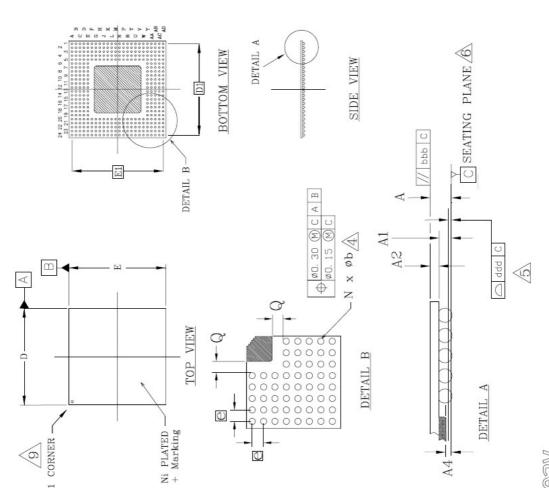
SYNC PULSE 10 ns minimum (active high state)

SYNC/SYNCN signal causes a stop of DataReady (see SYNC TIMING diagram on Figure 15), duration of stop is programming in the @RESET_DURATION. The 4 channels are now synchronous.

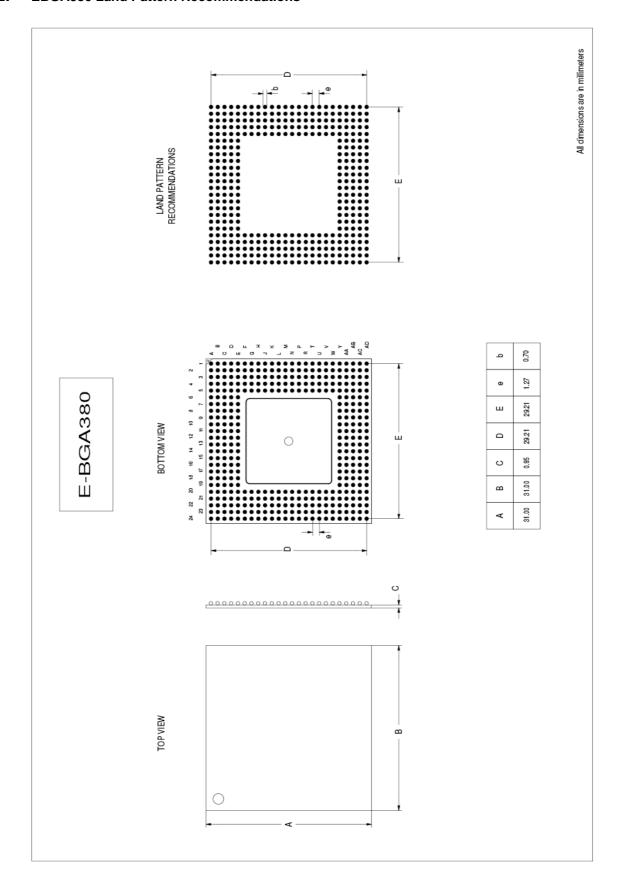
FLASH MODE & RAMP MODE:


Write @5D 000D # FLASH mode Write @5D 0009 # RAMP mode

Return to functional mode:


Write @5D 0000 # TEST_MODE disabled

7 Package Information


7.1. Package outline

- ALL DIMENSIONS ARE IN MILLIMETERS
- "M" REPRESENTS THE BASIC SOLDER BALL MATRIX SIZE, AND SYMBOL "N" IS THE MAXIMUM ALLOWABLE NUMBER OF "e" REPRESENTS THE BASIC SOLDER BALL GRID PITCH
- DIMENSION "b" IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER "ddd" IS MEASURED PARALLEL TO PRIMARY DATUM PARALLEL TO PRIMARY DATUM BALLS AFTER DEPOPULATING. DIMENSION 4
 - MEASURED PARALLEL TO PRIMARY DATUM C ENCAPSULANT SIZE MAY VARY WITH DIE SIZE. SPHERICAL CROWNS OF THE SOLDER BALLS. PACKAGE SURFACE SHALL BE NI PLATED. PRIMARY DATUM **√**0 **√**0
 - **€**
 - SMALL ROUND DEPRESSION FOR PIN 1 IDENTIFICATION.
- "A4" IS MEASURED AT THE EDGE OF ENCAPSULANT TO THE INNER EDGE OF BALL PAD. 10
 - DIMENSIONING AND TOLERANCING PER ASME Y14.5 1994
 - THIS DRAWING IS FOR QUALIFICATION PURPOSE ONLY.

7.2. EBGA380 Land Pattern Recommendations

7.3. Thermal Characteristics

Table 55. Thermal characteristics

Parameter	Symbol	Value	Unit	Note
Thermal resistance from junction to bottom of balls	Rth Junction to Bottom of balls	8.1	°C/Watt	(1)(2)
Thermal resistance from junction to board (JEDEC JESD51-8)	Rth junction - board	8.84	°C/Watt	(1)(2)
Thermal resistance from junction to top of case	Rth Junction - case	5.73	°C/Watt	(1)(2)
Thermal resistance from junction to ambient (JEDEC standard)	Rth _{Junction – amb}	17.8	°C/Watt	(1)(3)
Delta temperature Hot spot – diode of temperature		+7	°C	

Note

- Rth are calculated from hot spot, not from average temperature of the die These figures are thermal simulation results (finite elements method) with nominal cases.
- 2. Assumptions: no air, pure conduction, no radiation
- 3. Assumptions:
 - Convection according to JEDEC
 - Still air
 - Horizontal 2s2p board
 - Board size 114.3 x 101.6 mm, 1.6 mm thickness

It is important to consider a heatspreader leading to a uniform dissipation on the whole surface of the package so that temperature of each quarter of the package remains as much as possible similar. Any temperature gradient on package is to be avoided. Without it, 4 ADC cores will not be at the same temperature and level of interleaving spurs may increase.

7.4. Moisture Characteristics

This device is sensitive to the moisture (MSL3 according to JEDEC standard).

Shelf life in sealed bag: 12 months at <40°C and <90% relative humidity (RH).

After this bag is opened, devices that will be subjected to infrared reflow, vapor-phase reflow, or equivalent processing (peak package body temp. 220°C) must be:

- mounted within 168 hours at factory conditions of ≤30°C/60% RH, or
- stored at ≤10% RH

Devices require baking, before mounting, if Humidity Indicator is >20% when read at 23°C \pm 5°C. If baking is required, devices may be baked for:

- 13 days at 40°C + 5°C/-0°C and <5% RH for low temperature device containers, or
- 9 hours at 125°C ± 5°C for high-temperature device containers.

8 Ordering information

Table 56. Ordering information

Part Number	Package	Temperature Range	Screening Level	Comments
EVP12AS350TP-V2	EBGA380	Ambient	Beta Prototype of silicon Rev. 2	Contact sales for availability
EVP12AS350TPY- V3	EBGA380 RoHS	Ambient	Beta Prototype of final silicon	Pending availability
EVX12AS350ATPY	EBGA380 RoHS	Ambient	Final Prototype	Pending availability
EV12AS350ATP-EB	EBGA380	Ambient	Prototype	Evaluation Board
EV12AS350ACTP	EBGA380	0°C < Tc, Tj < 90°C	Commercial "C" Grade	Pending availability
EV12AS350AVTP	EBGA380	-40°C < Tc, Tj < 110°C	Industrial "V" Grade	Pending availability
EV12AS350ACTPY	EBGA380 RoHS	0°C < Tc, Tj < 90°C	Commercial "C" Grade	Pending availability
EV12AS350AVTPY	EBGA380 RoHS	-40°C < Tc, Tj < 110°C	Industrial "V" Grade	Pending availability

9 Document revision history

This table provides revision history for this document.

Table 57.Revision history

Rev. No	Date	Substantive change(s)
1160DX	December 2015	Add notes 1 and 2 about extended bandwidth on final product. Table 5: correct typo about SFDR2 @4.5 Gsps Fin=1200 MHz: 67dBFS instead of 75 dBFS Table 5: add note 4 about ENOB and SNR gain when considering averaging of 4 ADC cores + add some clarification about input clock frequency and ADC core sampling rate.
1160CX	November 2015	Table 5: Add note 1 and 2 about bandwidth extension for final product.
1160BX	November 2015	Max clock frequency is 5.4Gsps Update FFT values at 4.5Gsps and add FFT values at 5.4Gsps. Update power consumption at 4.5 & 5.4Gsps with swing adjust ON/OFF DiodeC needs to be grounded. Update diode characteristics. Add additional procedures regarding SPI Add details about VCCO split in VCCO1 and VCCO2 and GNDO split in GNDO1 and GNDO2, in order to provide details about decoupling scheme Add missing thermal characteristics
1160AX	September 2015	Initial revision

Table of contents

1	Block Dia	agram	2
2	Descripti	on	2
		tions	
_	3.1.	Absolute Maximum Ratings	
	3.2.	Recommended Conditions Of Use	4
	3.3.	Electrical Characteristics for supplies, Inputs and Outputs	5
	3.4.	Converter Characteristics	
	3.5.	Timing and switching characteristics	12
	3.5.1. Tim	ning diagrams for functional mode	13
	3.5.2. Ce	ntering of Data Ready on output data timing (TD1/TD2)	14
		ning diagram for Flash mode	
		ning diagram for Ramp mode	
	3.6. 3.7.	Explanation of test levels	
	3.7. 3.8.	Digital Output Coding Definition of Terms	
1			
4		ription	
	4.1. 4.2.	Pinout Table	
_		Pinout Table	
O	_	operation	
	5.1.	Overview	27
	5.2.	ADC Digital Interface (SPI: Serial Peripheral Interface)	
		I TIMINGS I Register mapping	
	5.2.2. 35	Addressing MASTER SPI and CHANNEL SPI	
	5.4.	Selection between OTP and SPI registers	
	5.5.	Functionalities summary	
	5.6.	Reset and start up procedure	
	5.7.	ADC Synchronization (SYNC) with programmable reset duration	
		C Synchronization (SYNC)	
	5.7.2. Da	ta Ready reset duration programming	38
		NC timing diagram	
	5.8.	ADC calibration	
		re ADCs calibrations	
		re interleaving calibrations	
		lection of one of the 2 sets of TEMP calibration.	
	5.9.	erpolation of TEMP calibration (for temperature)	
	5.10.	Staggered or simultaneous mode	49
		taggered mode	
		imultaneous mode	
	5.11.	CLOCK_DIV2: internal division of the clock frequency	
	5.12.	Stand-by mode	49
	5.13.	Swing Adjust	
	5.14.	Analog input impedance calibration	51
	5.15.	Analog input common mode calibration	
	5.16.	Test modes: Flash and Ramp	
	5.17.	PRBS: Pseudo Random Bit Sequence	
	5.18. 5.19.	Chip identification	
	5.20.	OTP status	
	5.20. 5.21.	Parity Bit	
	5.22.	In Range / Out of Range Bit	
6		on Information	
U	6.1.	Bypassing, decoupling and grounding	
	6.2.	Analog Inputs (VIN/VINN)	
	6.3.	Clock Inputs (CLK/CLKN).	
	6.4.	Digital Outputs	
	6.5.	Reset Buffer (SYNC, SYNCN)	
	6.6.	Procedure for synchronisation with FPGA	
7	Package	Information	
-	7.1.	Package outline	65
	7.2.	EBGA380 Land Pattern Recommendations	
	7.3.	Thermal Characteristics	
	7.4.	Moisture Characteristics	
8			68
	_		68
		., . C. V . 3 N. H 1 H. 3 I N. V	